Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
|- V = ( Vtx ` G ) |
2 |
|
simpl1 |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> G e. FriendGraph ) |
3 |
|
simpl2 |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> V e. Fin ) |
4 |
|
simpr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> G RegUSGraph K ) |
5 |
1
|
frgrregord013 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
7 |
|
hasheq0 |
|- ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
8 |
|
eqneqall |
|- ( V = (/) -> ( V =/= (/) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
9 |
7 8
|
syl6bi |
|- ( V e. Fin -> ( ( # ` V ) = 0 -> ( V =/= (/) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
10 |
9
|
com23 |
|- ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
11 |
10
|
a1i |
|- ( G e. FriendGraph -> ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
12 |
11
|
3imp |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
13 |
12
|
adantr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
14 |
13
|
com12 |
|- ( ( # ` V ) = 0 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
15 |
|
orc |
|- ( ( # ` V ) = 1 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
16 |
15
|
a1d |
|- ( ( # ` V ) = 1 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
17 |
|
olc |
|- ( ( # ` V ) = 3 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
18 |
17
|
a1d |
|- ( ( # ` V ) = 3 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
19 |
14 16 18
|
3jaoi |
|- ( ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
20 |
6 19
|
mpcom |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |