Metamath Proof Explorer


Theorem frgrregorufrg

Description: If there is a vertex having degree k for each nonnegative integer k in a friendship graph, then there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Revised by AV, 26-May-2021) (Proof shortened by AV, 12-Jan-2022)

Ref Expression
Hypotheses frgrregorufrg.v
|- V = ( Vtx ` G )
frgrregorufrg.e
|- E = ( Edg ` G )
Assertion frgrregorufrg
|- ( G e. FriendGraph -> A. k e. NN0 ( E. a e. V ( ( VtxDeg ` G ) ` a ) = k -> ( G RegUSGraph k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) ) )

Proof

Step Hyp Ref Expression
1 frgrregorufrg.v
 |-  V = ( Vtx ` G )
2 frgrregorufrg.e
 |-  E = ( Edg ` G )
3 eqid
 |-  ( VtxDeg ` G ) = ( VtxDeg ` G )
4 1 2 3 frgrregorufr
 |-  ( G e. FriendGraph -> ( E. a e. V ( ( VtxDeg ` G ) ` a ) = k -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) ) )
5 4 adantr
 |-  ( ( G e. FriendGraph /\ k e. NN0 ) -> ( E. a e. V ( ( VtxDeg ` G ) ` a ) = k -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) ) )
6 frgrusgr
 |-  ( G e. FriendGraph -> G e. USGraph )
7 nn0xnn0
 |-  ( k e. NN0 -> k e. NN0* )
8 1 3 usgreqdrusgr
 |-  ( ( G e. USGraph /\ k e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = k ) -> G RegUSGraph k )
9 8 3expia
 |-  ( ( G e. USGraph /\ k e. NN0* ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = k -> G RegUSGraph k ) )
10 6 7 9 syl2an
 |-  ( ( G e. FriendGraph /\ k e. NN0 ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = k -> G RegUSGraph k ) )
11 10 orim1d
 |-  ( ( G e. FriendGraph /\ k e. NN0 ) -> ( ( A. v e. V ( ( VtxDeg ` G ) ` v ) = k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) -> ( G RegUSGraph k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) ) )
12 5 11 syld
 |-  ( ( G e. FriendGraph /\ k e. NN0 ) -> ( E. a e. V ( ( VtxDeg ` G ) ` a ) = k -> ( G RegUSGraph k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) ) )
13 12 ralrimiva
 |-  ( G e. FriendGraph -> A. k e. NN0 ( E. a e. V ( ( VtxDeg ` G ) ` a ) = k -> ( G RegUSGraph k \/ E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) ) )