Description: Any null graph (without vertices) represented as hypergraph is a friendship graph. (Contributed by AV, 29-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | frgruhgr0v | |- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> G e. FriendGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr0vb | |- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
|
2 | 1 | biimpcd | |- ( G e. UHGraph -> ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) ) |
3 | 2 | anabsi5 | |- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
4 | frgr0vb | |- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. FriendGraph ) |
|
5 | 3 4 | mpd3an3 | |- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> G e. FriendGraph ) |