Metamath Proof Explorer


Theorem frgrwopreglem1

Description: Lemma 1 for frgrwopreg : the classes A and B are sets. The definition of A and B corresponds to definition 3 in Huneke p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrwopreg.v
|- V = ( Vtx ` G )
frgrwopreg.d
|- D = ( VtxDeg ` G )
frgrwopreg.a
|- A = { x e. V | ( D ` x ) = K }
frgrwopreg.b
|- B = ( V \ A )
Assertion frgrwopreglem1
|- ( A e. _V /\ B e. _V )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v
 |-  V = ( Vtx ` G )
2 frgrwopreg.d
 |-  D = ( VtxDeg ` G )
3 frgrwopreg.a
 |-  A = { x e. V | ( D ` x ) = K }
4 frgrwopreg.b
 |-  B = ( V \ A )
5 1 fvexi
 |-  V e. _V
6 rabexg
 |-  ( V e. _V -> { x e. V | ( D ` x ) = K } e. _V )
7 3 6 eqeltrid
 |-  ( V e. _V -> A e. _V )
8 difexg
 |-  ( V e. _V -> ( V \ A ) e. _V )
9 4 8 eqeltrid
 |-  ( V e. _V -> B e. _V )
10 7 9 jca
 |-  ( V e. _V -> ( A e. _V /\ B e. _V ) )
11 5 10 ax-mp
 |-  ( A e. _V /\ B e. _V )