Metamath Proof Explorer


Theorem frgrwopreglem3

Description: Lemma 3 for frgrwopreg . The vertices in the sets A and B have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 2-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v
|- V = ( Vtx ` G )
frgrwopreg.d
|- D = ( VtxDeg ` G )
frgrwopreg.a
|- A = { x e. V | ( D ` x ) = K }
frgrwopreg.b
|- B = ( V \ A )
Assertion frgrwopreglem3
|- ( ( X e. A /\ Y e. B ) -> ( D ` X ) =/= ( D ` Y ) )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v
 |-  V = ( Vtx ` G )
2 frgrwopreg.d
 |-  D = ( VtxDeg ` G )
3 frgrwopreg.a
 |-  A = { x e. V | ( D ` x ) = K }
4 frgrwopreg.b
 |-  B = ( V \ A )
5 fveqeq2
 |-  ( x = Y -> ( ( D ` x ) = K <-> ( D ` Y ) = K ) )
6 5 notbid
 |-  ( x = Y -> ( -. ( D ` x ) = K <-> -. ( D ` Y ) = K ) )
7 3 difeq2i
 |-  ( V \ A ) = ( V \ { x e. V | ( D ` x ) = K } )
8 notrab
 |-  ( V \ { x e. V | ( D ` x ) = K } ) = { x e. V | -. ( D ` x ) = K }
9 4 7 8 3eqtri
 |-  B = { x e. V | -. ( D ` x ) = K }
10 6 9 elrab2
 |-  ( Y e. B <-> ( Y e. V /\ -. ( D ` Y ) = K ) )
11 fveqeq2
 |-  ( x = X -> ( ( D ` x ) = K <-> ( D ` X ) = K ) )
12 11 3 elrab2
 |-  ( X e. A <-> ( X e. V /\ ( D ` X ) = K ) )
13 eqeq2
 |-  ( ( D ` X ) = K -> ( ( D ` Y ) = ( D ` X ) <-> ( D ` Y ) = K ) )
14 13 notbid
 |-  ( ( D ` X ) = K -> ( -. ( D ` Y ) = ( D ` X ) <-> -. ( D ` Y ) = K ) )
15 neqne
 |-  ( -. ( D ` Y ) = ( D ` X ) -> ( D ` Y ) =/= ( D ` X ) )
16 15 necomd
 |-  ( -. ( D ` Y ) = ( D ` X ) -> ( D ` X ) =/= ( D ` Y ) )
17 14 16 syl6bir
 |-  ( ( D ` X ) = K -> ( -. ( D ` Y ) = K -> ( D ` X ) =/= ( D ` Y ) ) )
18 12 17 simplbiim
 |-  ( X e. A -> ( -. ( D ` Y ) = K -> ( D ` X ) =/= ( D ` Y ) ) )
19 18 com12
 |-  ( -. ( D ` Y ) = K -> ( X e. A -> ( D ` X ) =/= ( D ` Y ) ) )
20 10 19 simplbiim
 |-  ( Y e. B -> ( X e. A -> ( D ` X ) =/= ( D ` Y ) ) )
21 20 impcom
 |-  ( ( X e. A /\ Y e. B ) -> ( D ` X ) =/= ( D ` Y ) )