| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrwopreg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
frgrwopreg.d |
|- D = ( VtxDeg ` G ) |
| 3 |
|
frgrwopreg.a |
|- A = { x e. V | ( D ` x ) = K } |
| 4 |
|
frgrwopreg.b |
|- B = ( V \ A ) |
| 5 |
|
fveqeq2 |
|- ( x = Y -> ( ( D ` x ) = K <-> ( D ` Y ) = K ) ) |
| 6 |
5
|
notbid |
|- ( x = Y -> ( -. ( D ` x ) = K <-> -. ( D ` Y ) = K ) ) |
| 7 |
3
|
difeq2i |
|- ( V \ A ) = ( V \ { x e. V | ( D ` x ) = K } ) |
| 8 |
|
notrab |
|- ( V \ { x e. V | ( D ` x ) = K } ) = { x e. V | -. ( D ` x ) = K } |
| 9 |
4 7 8
|
3eqtri |
|- B = { x e. V | -. ( D ` x ) = K } |
| 10 |
6 9
|
elrab2 |
|- ( Y e. B <-> ( Y e. V /\ -. ( D ` Y ) = K ) ) |
| 11 |
|
fveqeq2 |
|- ( x = X -> ( ( D ` x ) = K <-> ( D ` X ) = K ) ) |
| 12 |
11 3
|
elrab2 |
|- ( X e. A <-> ( X e. V /\ ( D ` X ) = K ) ) |
| 13 |
|
eqeq2 |
|- ( ( D ` X ) = K -> ( ( D ` Y ) = ( D ` X ) <-> ( D ` Y ) = K ) ) |
| 14 |
13
|
notbid |
|- ( ( D ` X ) = K -> ( -. ( D ` Y ) = ( D ` X ) <-> -. ( D ` Y ) = K ) ) |
| 15 |
|
neqne |
|- ( -. ( D ` Y ) = ( D ` X ) -> ( D ` Y ) =/= ( D ` X ) ) |
| 16 |
15
|
necomd |
|- ( -. ( D ` Y ) = ( D ` X ) -> ( D ` X ) =/= ( D ` Y ) ) |
| 17 |
14 16
|
biimtrrdi |
|- ( ( D ` X ) = K -> ( -. ( D ` Y ) = K -> ( D ` X ) =/= ( D ` Y ) ) ) |
| 18 |
12 17
|
simplbiim |
|- ( X e. A -> ( -. ( D ` Y ) = K -> ( D ` X ) =/= ( D ` Y ) ) ) |
| 19 |
18
|
com12 |
|- ( -. ( D ` Y ) = K -> ( X e. A -> ( D ` X ) =/= ( D ` Y ) ) ) |
| 20 |
10 19
|
simplbiim |
|- ( Y e. B -> ( X e. A -> ( D ` X ) =/= ( D ` Y ) ) ) |
| 21 |
20
|
impcom |
|- ( ( X e. A /\ Y e. B ) -> ( D ` X ) =/= ( D ` Y ) ) |