Metamath Proof Explorer


Theorem frgrwopreglem4

Description: Lemma 4 for frgrwopreg . In a friendship graph each vertex with degree K is connected with any vertex with degree other than K . This corresponds to statement 4 in Huneke p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v
|- V = ( Vtx ` G )
frgrwopreg.d
|- D = ( VtxDeg ` G )
frgrwopreg.a
|- A = { x e. V | ( D ` x ) = K }
frgrwopreg.b
|- B = ( V \ A )
frgrwopreg.e
|- E = ( Edg ` G )
Assertion frgrwopreglem4
|- ( G e. FriendGraph -> A. a e. A A. b e. B { a , b } e. E )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v
 |-  V = ( Vtx ` G )
2 frgrwopreg.d
 |-  D = ( VtxDeg ` G )
3 frgrwopreg.a
 |-  A = { x e. V | ( D ` x ) = K }
4 frgrwopreg.b
 |-  B = ( V \ A )
5 frgrwopreg.e
 |-  E = ( Edg ` G )
6 simpl
 |-  ( ( G e. FriendGraph /\ ( a e. A /\ b e. B ) ) -> G e. FriendGraph )
7 elrabi
 |-  ( a e. { x e. V | ( D ` x ) = K } -> a e. V )
8 7 3 eleq2s
 |-  ( a e. A -> a e. V )
9 eldifi
 |-  ( b e. ( V \ A ) -> b e. V )
10 9 4 eleq2s
 |-  ( b e. B -> b e. V )
11 8 10 anim12i
 |-  ( ( a e. A /\ b e. B ) -> ( a e. V /\ b e. V ) )
12 11 adantl
 |-  ( ( G e. FriendGraph /\ ( a e. A /\ b e. B ) ) -> ( a e. V /\ b e. V ) )
13 1 2 3 4 frgrwopreglem3
 |-  ( ( a e. A /\ b e. B ) -> ( D ` a ) =/= ( D ` b ) )
14 13 adantl
 |-  ( ( G e. FriendGraph /\ ( a e. A /\ b e. B ) ) -> ( D ` a ) =/= ( D ` b ) )
15 1 2 5 frgrwopreglem4a
 |-  ( ( G e. FriendGraph /\ ( a e. V /\ b e. V ) /\ ( D ` a ) =/= ( D ` b ) ) -> { a , b } e. E )
16 6 12 14 15 syl3anc
 |-  ( ( G e. FriendGraph /\ ( a e. A /\ b e. B ) ) -> { a , b } e. E )
17 16 ralrimivva
 |-  ( G e. FriendGraph -> A. a e. A A. b e. B { a , b } e. E )