| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v |
|- V = ( Vtx ` G ) |
| 2 |
|
frgrncvvdeq.d |
|- D = ( VtxDeg ` G ) |
| 3 |
|
frgrwopreglem4a.e |
|- E = ( Edg ` G ) |
| 4 |
|
fveq2 |
|- ( X = Y -> ( D ` X ) = ( D ` Y ) ) |
| 5 |
4
|
a1i |
|- ( ( X e. V /\ Y e. V ) -> ( X = Y -> ( D ` X ) = ( D ` Y ) ) ) |
| 6 |
5
|
necon3d |
|- ( ( X e. V /\ Y e. V ) -> ( ( D ` X ) =/= ( D ` Y ) -> X =/= Y ) ) |
| 7 |
6
|
imp |
|- ( ( ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> X =/= Y ) |
| 8 |
7
|
3adant1 |
|- ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> X =/= Y ) |
| 9 |
1 2
|
frgrncvvdeq |
|- ( G e. FriendGraph -> A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) ) |
| 10 |
|
oveq2 |
|- ( x = X -> ( G NeighbVtx x ) = ( G NeighbVtx X ) ) |
| 11 |
|
neleq2 |
|- ( ( G NeighbVtx x ) = ( G NeighbVtx X ) -> ( y e/ ( G NeighbVtx x ) <-> y e/ ( G NeighbVtx X ) ) ) |
| 12 |
10 11
|
syl |
|- ( x = X -> ( y e/ ( G NeighbVtx x ) <-> y e/ ( G NeighbVtx X ) ) ) |
| 13 |
|
fveqeq2 |
|- ( x = X -> ( ( D ` x ) = ( D ` y ) <-> ( D ` X ) = ( D ` y ) ) ) |
| 14 |
12 13
|
imbi12d |
|- ( x = X -> ( ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) <-> ( y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` y ) ) ) ) |
| 15 |
|
neleq1 |
|- ( y = Y -> ( y e/ ( G NeighbVtx X ) <-> Y e/ ( G NeighbVtx X ) ) ) |
| 16 |
|
fveq2 |
|- ( y = Y -> ( D ` y ) = ( D ` Y ) ) |
| 17 |
16
|
eqeq2d |
|- ( y = Y -> ( ( D ` X ) = ( D ` y ) <-> ( D ` X ) = ( D ` Y ) ) ) |
| 18 |
15 17
|
imbi12d |
|- ( y = Y -> ( ( y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` y ) ) <-> ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) ) ) |
| 19 |
|
simpll |
|- ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> X e. V ) |
| 20 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
| 21 |
20
|
difeq2d |
|- ( x = X -> ( V \ { x } ) = ( V \ { X } ) ) |
| 22 |
21
|
adantl |
|- ( ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) /\ x = X ) -> ( V \ { x } ) = ( V \ { X } ) ) |
| 23 |
|
simpr |
|- ( ( X e. V /\ Y e. V ) -> Y e. V ) |
| 24 |
|
necom |
|- ( X =/= Y <-> Y =/= X ) |
| 25 |
24
|
biimpi |
|- ( X =/= Y -> Y =/= X ) |
| 26 |
23 25
|
anim12i |
|- ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( Y e. V /\ Y =/= X ) ) |
| 27 |
|
eldifsn |
|- ( Y e. ( V \ { X } ) <-> ( Y e. V /\ Y =/= X ) ) |
| 28 |
26 27
|
sylibr |
|- ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> Y e. ( V \ { X } ) ) |
| 29 |
14 18 19 22 28
|
rspc2vd |
|- ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) -> ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) ) ) |
| 30 |
|
nnel |
|- ( -. Y e/ ( G NeighbVtx X ) <-> Y e. ( G NeighbVtx X ) ) |
| 31 |
|
nbgrsym |
|- ( Y e. ( G NeighbVtx X ) <-> X e. ( G NeighbVtx Y ) ) |
| 32 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
| 33 |
3
|
nbusgreledg |
|- ( G e. USGraph -> ( X e. ( G NeighbVtx Y ) <-> { X , Y } e. E ) ) |
| 34 |
32 33
|
syl |
|- ( G e. FriendGraph -> ( X e. ( G NeighbVtx Y ) <-> { X , Y } e. E ) ) |
| 35 |
34
|
biimpd |
|- ( G e. FriendGraph -> ( X e. ( G NeighbVtx Y ) -> { X , Y } e. E ) ) |
| 36 |
31 35
|
biimtrid |
|- ( G e. FriendGraph -> ( Y e. ( G NeighbVtx X ) -> { X , Y } e. E ) ) |
| 37 |
36
|
imp |
|- ( ( G e. FriendGraph /\ Y e. ( G NeighbVtx X ) ) -> { X , Y } e. E ) |
| 38 |
37
|
a1d |
|- ( ( G e. FriendGraph /\ Y e. ( G NeighbVtx X ) ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) |
| 39 |
38
|
expcom |
|- ( Y e. ( G NeighbVtx X ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) |
| 40 |
39
|
a1d |
|- ( Y e. ( G NeighbVtx X ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 41 |
30 40
|
sylbi |
|- ( -. Y e/ ( G NeighbVtx X ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 42 |
|
eqneqall |
|- ( ( D ` X ) = ( D ` Y ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) |
| 43 |
42
|
2a1d |
|- ( ( D ` X ) = ( D ` Y ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 44 |
41 43
|
ja |
|- ( ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 45 |
44
|
com12 |
|- ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 46 |
29 45
|
syld |
|- ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 47 |
46
|
com3l |
|- ( A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) -> ( G e. FriendGraph -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 48 |
9 47
|
mpcom |
|- ( G e. FriendGraph -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) |
| 49 |
48
|
expd |
|- ( G e. FriendGraph -> ( ( X e. V /\ Y e. V ) -> ( X =/= Y -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) |
| 50 |
49
|
com34 |
|- ( G e. FriendGraph -> ( ( X e. V /\ Y e. V ) -> ( ( D ` X ) =/= ( D ` Y ) -> ( X =/= Y -> { X , Y } e. E ) ) ) ) |
| 51 |
50
|
3imp |
|- ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( X =/= Y -> { X , Y } e. E ) ) |
| 52 |
8 51
|
mpd |
|- ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> { X , Y } e. E ) |