Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrncvvdeq.d |
|- D = ( VtxDeg ` G ) |
3 |
|
frgrwopreglem4a.e |
|- E = ( Edg ` G ) |
4 |
|
id |
|- ( G e. FriendGraph -> G e. FriendGraph ) |
5 |
|
simpl |
|- ( ( A e. V /\ X e. V ) -> A e. V ) |
6 |
|
simpl |
|- ( ( B e. V /\ Y e. V ) -> B e. V ) |
7 |
5 6
|
anim12i |
|- ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( A e. V /\ B e. V ) ) |
8 |
|
simp2 |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` A ) =/= ( D ` B ) ) |
9 |
1 2 3
|
frgrwopreglem4a |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ ( D ` A ) =/= ( D ` B ) ) -> { A , B } e. E ) |
10 |
4 7 8 9
|
syl3an |
|- ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { A , B } e. E ) |
11 |
|
simpr |
|- ( ( A e. V /\ X e. V ) -> X e. V ) |
12 |
11 6
|
anim12ci |
|- ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( B e. V /\ X e. V ) ) |
13 |
|
pm13.18 |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) ) -> ( D ` X ) =/= ( D ` B ) ) |
14 |
13
|
3adant3 |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` X ) =/= ( D ` B ) ) |
15 |
14
|
necomd |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` B ) =/= ( D ` X ) ) |
16 |
1 2 3
|
frgrwopreglem4a |
|- ( ( G e. FriendGraph /\ ( B e. V /\ X e. V ) /\ ( D ` B ) =/= ( D ` X ) ) -> { B , X } e. E ) |
17 |
4 12 15 16
|
syl3an |
|- ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { B , X } e. E ) |
18 |
|
simpr |
|- ( ( B e. V /\ Y e. V ) -> Y e. V ) |
19 |
11 18
|
anim12i |
|- ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( X e. V /\ Y e. V ) ) |
20 |
|
simp3 |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` X ) =/= ( D ` Y ) ) |
21 |
1 2 3
|
frgrwopreglem4a |
|- ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> { X , Y } e. E ) |
22 |
4 19 20 21
|
syl3an |
|- ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { X , Y } e. E ) |
23 |
5 18
|
anim12ci |
|- ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( Y e. V /\ A e. V ) ) |
24 |
|
pm13.181 |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` A ) =/= ( D ` Y ) ) |
25 |
24
|
3adant2 |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` A ) =/= ( D ` Y ) ) |
26 |
25
|
necomd |
|- ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` Y ) =/= ( D ` A ) ) |
27 |
1 2 3
|
frgrwopreglem4a |
|- ( ( G e. FriendGraph /\ ( Y e. V /\ A e. V ) /\ ( D ` Y ) =/= ( D ` A ) ) -> { Y , A } e. E ) |
28 |
4 23 26 27
|
syl3an |
|- ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { Y , A } e. E ) |
29 |
22 28
|
jca |
|- ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> ( { X , Y } e. E /\ { Y , A } e. E ) ) |
30 |
10 17 29
|
jca31 |
|- ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> ( ( { A , B } e. E /\ { B , X } e. E ) /\ ( { X , Y } e. E /\ { Y , A } e. E ) ) ) |