| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrwopreg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | frgrwopreg.a |  |-  A = { x e. V | ( D ` x ) = K } | 
						
							| 4 |  | frgrwopreg.b |  |-  B = ( V \ A ) | 
						
							| 5 |  | frgrwopreg.e |  |-  E = ( Edg ` G ) | 
						
							| 6 | 3 | reqabi |  |-  ( x e. A <-> ( x e. V /\ ( D ` x ) = K ) ) | 
						
							| 7 |  | fveqeq2 |  |-  ( x = a -> ( ( D ` x ) = K <-> ( D ` a ) = K ) ) | 
						
							| 8 | 7 3 | elrab2 |  |-  ( a e. A <-> ( a e. V /\ ( D ` a ) = K ) ) | 
						
							| 9 |  | eqtr3 |  |-  ( ( ( D ` a ) = K /\ ( D ` x ) = K ) -> ( D ` a ) = ( D ` x ) ) | 
						
							| 10 | 9 | expcom |  |-  ( ( D ` x ) = K -> ( ( D ` a ) = K -> ( D ` a ) = ( D ` x ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( x e. V /\ ( D ` x ) = K ) -> ( ( D ` a ) = K -> ( D ` a ) = ( D ` x ) ) ) | 
						
							| 12 | 11 | com12 |  |-  ( ( D ` a ) = K -> ( ( x e. V /\ ( D ` x ) = K ) -> ( D ` a ) = ( D ` x ) ) ) | 
						
							| 13 | 8 12 | simplbiim |  |-  ( a e. A -> ( ( x e. V /\ ( D ` x ) = K ) -> ( D ` a ) = ( D ` x ) ) ) | 
						
							| 14 | 6 13 | biimtrid |  |-  ( a e. A -> ( x e. A -> ( D ` a ) = ( D ` x ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( a e. A /\ x e. A ) -> ( D ` a ) = ( D ` x ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( D ` a ) = ( D ` x ) ) | 
						
							| 17 | 1 2 3 4 | frgrwopreglem3 |  |-  ( ( a e. A /\ b e. B ) -> ( D ` a ) =/= ( D ` b ) ) | 
						
							| 18 | 17 | ad2ant2r |  |-  ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( D ` a ) =/= ( D ` b ) ) | 
						
							| 19 |  | fveqeq2 |  |-  ( x = z -> ( ( D ` x ) = K <-> ( D ` z ) = K ) ) | 
						
							| 20 | 19 | cbvrabv |  |-  { x e. V | ( D ` x ) = K } = { z e. V | ( D ` z ) = K } | 
						
							| 21 | 3 20 | eqtri |  |-  A = { z e. V | ( D ` z ) = K } | 
						
							| 22 | 1 2 21 4 | frgrwopreglem3 |  |-  ( ( x e. A /\ y e. B ) -> ( D ` x ) =/= ( D ` y ) ) | 
						
							| 23 | 22 | ad2ant2l |  |-  ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( D ` x ) =/= ( D ` y ) ) | 
						
							| 24 | 16 18 23 | 3jca |  |-  ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( ( D ` a ) = ( D ` x ) /\ ( D ` a ) =/= ( D ` b ) /\ ( D ` x ) =/= ( D ` y ) ) ) |