Step |
Hyp |
Ref |
Expression |
1 |
|
frgrwopreg.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrwopreg.d |
|- D = ( VtxDeg ` G ) |
3 |
|
frgrwopreg.a |
|- A = { x e. V | ( D ` x ) = K } |
4 |
|
frgrwopreg.b |
|- B = ( V \ A ) |
5 |
|
frgrwopreg.e |
|- E = ( Edg ` G ) |
6 |
3
|
rabeq2i |
|- ( x e. A <-> ( x e. V /\ ( D ` x ) = K ) ) |
7 |
|
fveqeq2 |
|- ( x = a -> ( ( D ` x ) = K <-> ( D ` a ) = K ) ) |
8 |
7 3
|
elrab2 |
|- ( a e. A <-> ( a e. V /\ ( D ` a ) = K ) ) |
9 |
|
eqtr3 |
|- ( ( ( D ` a ) = K /\ ( D ` x ) = K ) -> ( D ` a ) = ( D ` x ) ) |
10 |
9
|
expcom |
|- ( ( D ` x ) = K -> ( ( D ` a ) = K -> ( D ` a ) = ( D ` x ) ) ) |
11 |
10
|
adantl |
|- ( ( x e. V /\ ( D ` x ) = K ) -> ( ( D ` a ) = K -> ( D ` a ) = ( D ` x ) ) ) |
12 |
11
|
com12 |
|- ( ( D ` a ) = K -> ( ( x e. V /\ ( D ` x ) = K ) -> ( D ` a ) = ( D ` x ) ) ) |
13 |
8 12
|
simplbiim |
|- ( a e. A -> ( ( x e. V /\ ( D ` x ) = K ) -> ( D ` a ) = ( D ` x ) ) ) |
14 |
6 13
|
syl5bi |
|- ( a e. A -> ( x e. A -> ( D ` a ) = ( D ` x ) ) ) |
15 |
14
|
imp |
|- ( ( a e. A /\ x e. A ) -> ( D ` a ) = ( D ` x ) ) |
16 |
15
|
adantr |
|- ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( D ` a ) = ( D ` x ) ) |
17 |
1 2 3 4
|
frgrwopreglem3 |
|- ( ( a e. A /\ b e. B ) -> ( D ` a ) =/= ( D ` b ) ) |
18 |
17
|
ad2ant2r |
|- ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( D ` a ) =/= ( D ` b ) ) |
19 |
|
fveqeq2 |
|- ( x = z -> ( ( D ` x ) = K <-> ( D ` z ) = K ) ) |
20 |
19
|
cbvrabv |
|- { x e. V | ( D ` x ) = K } = { z e. V | ( D ` z ) = K } |
21 |
3 20
|
eqtri |
|- A = { z e. V | ( D ` z ) = K } |
22 |
1 2 21 4
|
frgrwopreglem3 |
|- ( ( x e. A /\ y e. B ) -> ( D ` x ) =/= ( D ` y ) ) |
23 |
22
|
ad2ant2l |
|- ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( D ` x ) =/= ( D ` y ) ) |
24 |
16 18 23
|
3jca |
|- ( ( ( a e. A /\ x e. A ) /\ ( b e. B /\ y e. B ) ) -> ( ( D ` a ) = ( D ` x ) /\ ( D ` a ) =/= ( D ` b ) /\ ( D ` x ) =/= ( D ` y ) ) ) |