Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frins.1 | |- R Fr A | |
| frins.2 | |- R Se A | ||
| frins.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) | ||
| Assertion | frins | |- ( y e. A -> ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frins.1 | |- R Fr A | |
| 2 | frins.2 | |- R Se A | |
| 3 | frins.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) | |
| 4 | 3 | frinsg | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) | 
| 5 | 1 2 4 | mp2an | |- A. y e. A ph | 
| 6 | 5 | rspec | |- ( y e. A -> ph ) |