Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frins2.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) | |
| frins2.3 | |- ( y = z -> ( ph <-> ps ) ) | ||
| Assertion | frins2 | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frins2.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) | |
| 2 | frins2.3 | |- ( y = z -> ( ph <-> ps ) ) | |
| 3 | nfv | |- F/ y ps | |
| 4 | 1 3 2 | frins2f | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |