Step |
Hyp |
Ref |
Expression |
1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
2 |
|
frlm0.z |
|- .0. = ( 0g ` R ) |
3 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
4 |
|
eqid |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
5 |
4
|
pwslmod |
|- ( ( ( ringLMod ` R ) e. LMod /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) e. LMod ) |
6 |
3 5
|
sylan |
|- ( ( R e. Ring /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) e. LMod ) |
7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
8 |
|
eqid |
|- ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) |
9 |
1 7 8
|
frlmlss |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) |
10 |
8
|
lsssubg |
|- ( ( ( ( ringLMod ` R ) ^s I ) e. LMod /\ ( Base ` F ) e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) -> ( Base ` F ) e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) ) |
11 |
6 9 10
|
syl2anc |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) ) |
12 |
|
eqid |
|- ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) |
13 |
|
eqid |
|- ( 0g ` ( ( ringLMod ` R ) ^s I ) ) = ( 0g ` ( ( ringLMod ` R ) ^s I ) ) |
14 |
12 13
|
subg0 |
|- ( ( Base ` F ) e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) -> ( 0g ` ( ( ringLMod ` R ) ^s I ) ) = ( 0g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
15 |
11 14
|
syl |
|- ( ( R e. Ring /\ I e. W ) -> ( 0g ` ( ( ringLMod ` R ) ^s I ) ) = ( 0g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
16 |
|
lmodgrp |
|- ( ( ringLMod ` R ) e. LMod -> ( ringLMod ` R ) e. Grp ) |
17 |
|
grpmnd |
|- ( ( ringLMod ` R ) e. Grp -> ( ringLMod ` R ) e. Mnd ) |
18 |
3 16 17
|
3syl |
|- ( R e. Ring -> ( ringLMod ` R ) e. Mnd ) |
19 |
|
rlm0 |
|- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |
20 |
2 19
|
eqtri |
|- .0. = ( 0g ` ( ringLMod ` R ) ) |
21 |
4 20
|
pws0g |
|- ( ( ( ringLMod ` R ) e. Mnd /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` ( ( ringLMod ` R ) ^s I ) ) ) |
22 |
18 21
|
sylan |
|- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` ( ( ringLMod ` R ) ^s I ) ) ) |
23 |
1 7
|
frlmpws |
|- ( ( R e. Ring /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) |
24 |
23
|
fveq2d |
|- ( ( R e. Ring /\ I e. W ) -> ( 0g ` F ) = ( 0g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
25 |
15 22 24
|
3eqtr4d |
|- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` F ) ) |