Metamath Proof Explorer


Theorem frlmbasf

Description: Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f
|- F = ( R freeLMod I )
frlmbasmap.n
|- N = ( Base ` R )
frlmbasmap.b
|- B = ( Base ` F )
Assertion frlmbasf
|- ( ( I e. W /\ X e. B ) -> X : I --> N )

Proof

Step Hyp Ref Expression
1 frlmval.f
 |-  F = ( R freeLMod I )
2 frlmbasmap.n
 |-  N = ( Base ` R )
3 frlmbasmap.b
 |-  B = ( Base ` F )
4 1 2 3 frlmbasmap
 |-  ( ( I e. W /\ X e. B ) -> X e. ( N ^m I ) )
5 2 fvexi
 |-  N e. _V
6 elmapg
 |-  ( ( N e. _V /\ I e. W ) -> ( X e. ( N ^m I ) <-> X : I --> N ) )
7 5 6 mpan
 |-  ( I e. W -> ( X e. ( N ^m I ) <-> X : I --> N ) )
8 7 adantr
 |-  ( ( I e. W /\ X e. B ) -> ( X e. ( N ^m I ) <-> X : I --> N ) )
9 4 8 mpbid
 |-  ( ( I e. W /\ X e. B ) -> X : I --> N )