| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmval.f |  |-  F = ( R freeLMod I ) | 
						
							| 2 |  | frlmbasfsupp.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | frlmbasfsupp.b |  |-  B = ( Base ` F ) | 
						
							| 4 |  | simpr |  |-  ( ( I e. W /\ X e. B ) -> X e. B ) | 
						
							| 5 | 1 3 | frlmrcl |  |-  ( X e. B -> R e. _V ) | 
						
							| 6 |  | simpl |  |-  ( ( I e. W /\ X e. B ) -> I e. W ) | 
						
							| 7 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 8 | 1 7 2 3 | frlmelbas |  |-  ( ( R e. _V /\ I e. W ) -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) ) | 
						
							| 9 | 5 6 8 | syl2an2 |  |-  ( ( I e. W /\ X e. B ) -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) ) | 
						
							| 10 | 4 9 | mpbid |  |-  ( ( I e. W /\ X e. B ) -> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) | 
						
							| 11 | 10 | simprd |  |-  ( ( I e. W /\ X e. B ) -> X finSupp .0. ) |