| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmbasmap.n |
|- N = ( Base ` R ) |
| 3 |
|
frlmbasmap.b |
|- B = ( Base ` F ) |
| 4 |
|
simpr |
|- ( ( I e. W /\ X e. B ) -> X e. B ) |
| 5 |
1 3
|
frlmrcl |
|- ( X e. B -> R e. _V ) |
| 6 |
|
simpl |
|- ( ( I e. W /\ X e. B ) -> I e. W ) |
| 7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 8 |
1 2 7 3
|
frlmelbas |
|- ( ( R e. _V /\ I e. W ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp ( 0g ` R ) ) ) ) |
| 9 |
5 6 8
|
syl2an2 |
|- ( ( I e. W /\ X e. B ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp ( 0g ` R ) ) ) ) |
| 10 |
4 9
|
mpbid |
|- ( ( I e. W /\ X e. B ) -> ( X e. ( N ^m I ) /\ X finSupp ( 0g ` R ) ) ) |
| 11 |
10
|
simpld |
|- ( ( I e. W /\ X e. B ) -> X e. ( N ^m I ) ) |