Metamath Proof Explorer


Theorem frlmbasmap

Description: Elements of the free module are set functions. (Contributed by Stefan O'Rear, 3-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmval.f
|- F = ( R freeLMod I )
frlmbasmap.n
|- N = ( Base ` R )
frlmbasmap.b
|- B = ( Base ` F )
Assertion frlmbasmap
|- ( ( I e. W /\ X e. B ) -> X e. ( N ^m I ) )

Proof

Step Hyp Ref Expression
1 frlmval.f
 |-  F = ( R freeLMod I )
2 frlmbasmap.n
 |-  N = ( Base ` R )
3 frlmbasmap.b
 |-  B = ( Base ` F )
4 simpr
 |-  ( ( I e. W /\ X e. B ) -> X e. B )
5 1 3 frlmrcl
 |-  ( X e. B -> R e. _V )
6 simpl
 |-  ( ( I e. W /\ X e. B ) -> I e. W )
7 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
8 1 2 7 3 frlmelbas
 |-  ( ( R e. _V /\ I e. W ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp ( 0g ` R ) ) ) )
9 5 6 8 syl2an2
 |-  ( ( I e. W /\ X e. B ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp ( 0g ` R ) ) ) )
10 4 9 mpbid
 |-  ( ( I e. W /\ X e. B ) -> ( X e. ( N ^m I ) /\ X finSupp ( 0g ` R ) ) )
11 10 simpld
 |-  ( ( I e. W /\ X e. B ) -> X e. ( N ^m I ) )