Step |
Hyp |
Ref |
Expression |
1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmelbas.n |
|- N = ( Base ` R ) |
3 |
|
frlmelbas.z |
|- .0. = ( 0g ` R ) |
4 |
|
frlmelbas.b |
|- B = ( Base ` F ) |
5 |
|
eqid |
|- { k e. ( N ^m I ) | k finSupp .0. } = { k e. ( N ^m I ) | k finSupp .0. } |
6 |
1 2 3 5
|
frlmbas |
|- ( ( R e. V /\ I e. W ) -> { k e. ( N ^m I ) | k finSupp .0. } = ( Base ` F ) ) |
7 |
4 6
|
eqtr4id |
|- ( ( R e. V /\ I e. W ) -> B = { k e. ( N ^m I ) | k finSupp .0. } ) |
8 |
7
|
eleq2d |
|- ( ( R e. V /\ I e. W ) -> ( X e. B <-> X e. { k e. ( N ^m I ) | k finSupp .0. } ) ) |
9 |
|
breq1 |
|- ( k = X -> ( k finSupp .0. <-> X finSupp .0. ) ) |
10 |
9
|
elrab |
|- ( X e. { k e. ( N ^m I ) | k finSupp .0. } <-> ( X e. ( N ^m I ) /\ X finSupp .0. ) ) |
11 |
8 10
|
bitrdi |
|- ( ( R e. V /\ I e. W ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp .0. ) ) ) |