Step |
Hyp |
Ref |
Expression |
1 |
|
frlmphl.y |
|- Y = ( R freeLMod I ) |
2 |
|
frlmphl.b |
|- B = ( Base ` R ) |
3 |
|
frlmphl.t |
|- .x. = ( .r ` R ) |
4 |
|
eqid |
|- ( R freeLMod I ) = ( R freeLMod I ) |
5 |
|
eqid |
|- ( Base ` ( R freeLMod I ) ) = ( Base ` ( R freeLMod I ) ) |
6 |
4 5
|
frlmpws |
|- ( ( R e. V /\ I e. W ) -> ( R freeLMod I ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
7 |
6
|
ancoms |
|- ( ( I e. W /\ R e. V ) -> ( R freeLMod I ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
8 |
2
|
ressid |
|- ( R e. V -> ( R |`s B ) = R ) |
9 |
|
eqidd |
|- ( R e. V -> ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` B ) ) |
10 |
2
|
eqimssi |
|- B C_ ( Base ` R ) |
11 |
10
|
a1i |
|- ( R e. V -> B C_ ( Base ` R ) ) |
12 |
9 11
|
srasca |
|- ( R e. V -> ( R |`s B ) = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) ) |
13 |
8 12
|
eqtr3d |
|- ( R e. V -> R = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) ) |
14 |
13
|
oveq1d |
|- ( R e. V -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
15 |
14
|
adantl |
|- ( ( I e. W /\ R e. V ) -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
16 |
|
fvex |
|- ( ( subringAlg ` R ) ` B ) e. _V |
17 |
|
rlmval |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
18 |
2
|
fveq2i |
|- ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
19 |
17 18
|
eqtr4i |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` B ) |
20 |
19
|
oveq1i |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ( subringAlg ` R ) ` B ) ^s I ) |
21 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` R ) ` B ) ) = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) |
22 |
20 21
|
pwsval |
|- ( ( ( ( subringAlg ` R ) ` B ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
23 |
16 22
|
mpan |
|- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
24 |
23
|
adantr |
|- ( ( I e. W /\ R e. V ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
25 |
15 24
|
eqtr4d |
|- ( ( I e. W /\ R e. V ) -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( ringLMod ` R ) ^s I ) ) |
26 |
1
|
fveq2i |
|- ( Base ` Y ) = ( Base ` ( R freeLMod I ) ) |
27 |
26
|
a1i |
|- ( ( I e. W /\ R e. V ) -> ( Base ` Y ) = ( Base ` ( R freeLMod I ) ) ) |
28 |
25 27
|
oveq12d |
|- ( ( I e. W /\ R e. V ) -> ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
29 |
7 28
|
eqtr4d |
|- ( ( I e. W /\ R e. V ) -> ( R freeLMod I ) = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
30 |
1 29
|
eqtrid |
|- ( ( I e. W /\ R e. V ) -> Y = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
31 |
30
|
fveq2d |
|- ( ( I e. W /\ R e. V ) -> ( .i ` Y ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) ) |
32 |
|
fvex |
|- ( Base ` Y ) e. _V |
33 |
|
eqid |
|- ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) |
34 |
|
eqid |
|- ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
35 |
33 34
|
ressip |
|- ( ( Base ` Y ) e. _V -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) ) |
36 |
32 35
|
ax-mp |
|- ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
37 |
|
eqid |
|- ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |
38 |
|
simpr |
|- ( ( I e. W /\ R e. V ) -> R e. V ) |
39 |
|
snex |
|- { ( ( subringAlg ` R ) ` B ) } e. _V |
40 |
|
xpexg |
|- ( ( I e. W /\ { ( ( subringAlg ` R ) ` B ) } e. _V ) -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
41 |
39 40
|
mpan2 |
|- ( I e. W -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
42 |
41
|
adantr |
|- ( ( I e. W /\ R e. V ) -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
43 |
|
eqid |
|- ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
44 |
16
|
snnz |
|- { ( ( subringAlg ` R ) ` B ) } =/= (/) |
45 |
|
dmxp |
|- ( { ( ( subringAlg ` R ) ` B ) } =/= (/) -> dom ( I X. { ( ( subringAlg ` R ) ` B ) } ) = I ) |
46 |
44 45
|
mp1i |
|- ( ( I e. W /\ R e. V ) -> dom ( I X. { ( ( subringAlg ` R ) ` B ) } ) = I ) |
47 |
37 38 42 43 46 34
|
prdsip |
|- ( ( I e. W /\ R e. V ) -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( f e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) , g e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) ) ) |
48 |
37 38 42 43 46
|
prdsbas |
|- ( ( I e. W /\ R e. V ) -> ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ) |
49 |
|
eqidd |
|- ( x e. I -> ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` B ) ) |
50 |
10
|
a1i |
|- ( x e. I -> B C_ ( Base ` R ) ) |
51 |
49 50
|
srabase |
|- ( x e. I -> ( Base ` R ) = ( Base ` ( ( subringAlg ` R ) ` B ) ) ) |
52 |
2
|
a1i |
|- ( x e. I -> B = ( Base ` R ) ) |
53 |
16
|
fvconst2 |
|- ( x e. I -> ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) = ( ( subringAlg ` R ) ` B ) ) |
54 |
53
|
fveq2d |
|- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = ( Base ` ( ( subringAlg ` R ) ` B ) ) ) |
55 |
51 52 54
|
3eqtr4rd |
|- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = B ) |
56 |
55
|
adantl |
|- ( ( ( I e. W /\ R e. V ) /\ x e. I ) -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = B ) |
57 |
56
|
ixpeq2dva |
|- ( ( I e. W /\ R e. V ) -> X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = X_ x e. I B ) |
58 |
2
|
fvexi |
|- B e. _V |
59 |
|
ixpconstg |
|- ( ( I e. W /\ B e. _V ) -> X_ x e. I B = ( B ^m I ) ) |
60 |
58 59
|
mpan2 |
|- ( I e. W -> X_ x e. I B = ( B ^m I ) ) |
61 |
60
|
adantr |
|- ( ( I e. W /\ R e. V ) -> X_ x e. I B = ( B ^m I ) ) |
62 |
48 57 61
|
3eqtrd |
|- ( ( I e. W /\ R e. V ) -> ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( B ^m I ) ) |
63 |
53 50
|
sraip |
|- ( x e. I -> ( .r ` R ) = ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ) |
64 |
3 63
|
eqtr2id |
|- ( x e. I -> ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = .x. ) |
65 |
64
|
oveqd |
|- ( x e. I -> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) = ( ( f ` x ) .x. ( g ` x ) ) ) |
66 |
65
|
mpteq2ia |
|- ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) |
67 |
66
|
oveq2i |
|- ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) = ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) |
68 |
67
|
a1i |
|- ( ( I e. W /\ R e. V ) -> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) = ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) |
69 |
62 62 68
|
mpoeq123dv |
|- ( ( I e. W /\ R e. V ) -> ( f e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) , g e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
70 |
47 69
|
eqtrd |
|- ( ( I e. W /\ R e. V ) -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
71 |
36 70
|
eqtr3id |
|- ( ( I e. W /\ R e. V ) -> ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
72 |
31 71
|
eqtr2d |
|- ( ( I e. W /\ R e. V ) -> ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) = ( .i ` Y ) ) |