Step |
Hyp |
Ref |
Expression |
1 |
|
frlmlbs.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmlbs.u |
|- U = ( R unitVec I ) |
3 |
|
frlmlbs.j |
|- J = ( LBasis ` F ) |
4 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
5 |
2 1 4
|
uvcff |
|- ( ( R e. Ring /\ I e. V ) -> U : I --> ( Base ` F ) ) |
6 |
5
|
frnd |
|- ( ( R e. Ring /\ I e. V ) -> ran U C_ ( Base ` F ) ) |
7 |
|
suppssdm |
|- ( a supp ( 0g ` R ) ) C_ dom a |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
1 8 4
|
frlmbasf |
|- ( ( I e. V /\ a e. ( Base ` F ) ) -> a : I --> ( Base ` R ) ) |
10 |
9
|
adantll |
|- ( ( ( R e. Ring /\ I e. V ) /\ a e. ( Base ` F ) ) -> a : I --> ( Base ` R ) ) |
11 |
7 10
|
fssdm |
|- ( ( ( R e. Ring /\ I e. V ) /\ a e. ( Base ` F ) ) -> ( a supp ( 0g ` R ) ) C_ I ) |
12 |
11
|
ralrimiva |
|- ( ( R e. Ring /\ I e. V ) -> A. a e. ( Base ` F ) ( a supp ( 0g ` R ) ) C_ I ) |
13 |
|
rabid2 |
|- ( ( Base ` F ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } <-> A. a e. ( Base ` F ) ( a supp ( 0g ` R ) ) C_ I ) |
14 |
12 13
|
sylibr |
|- ( ( R e. Ring /\ I e. V ) -> ( Base ` F ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } ) |
15 |
|
ssid |
|- I C_ I |
16 |
|
eqid |
|- ( LSpan ` F ) = ( LSpan ` F ) |
17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
18 |
|
eqid |
|- { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } |
19 |
1 2 16 4 17 18
|
frlmsslsp |
|- ( ( R e. Ring /\ I e. V /\ I C_ I ) -> ( ( LSpan ` F ) ` ( U " I ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } ) |
20 |
15 19
|
mp3an3 |
|- ( ( R e. Ring /\ I e. V ) -> ( ( LSpan ` F ) ` ( U " I ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } ) |
21 |
|
ffn |
|- ( U : I --> ( Base ` F ) -> U Fn I ) |
22 |
|
fnima |
|- ( U Fn I -> ( U " I ) = ran U ) |
23 |
5 21 22
|
3syl |
|- ( ( R e. Ring /\ I e. V ) -> ( U " I ) = ran U ) |
24 |
23
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( ( LSpan ` F ) ` ( U " I ) ) = ( ( LSpan ` F ) ` ran U ) ) |
25 |
14 20 24
|
3eqtr2rd |
|- ( ( R e. Ring /\ I e. V ) -> ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) ) |
26 |
|
eqid |
|- ( .s ` F ) = ( .s ` F ) |
27 |
|
eqid |
|- { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } |
28 |
|
simpll |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> R e. Ring ) |
29 |
|
simplr |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> I e. V ) |
30 |
|
difssd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( I \ { c } ) C_ I ) |
31 |
|
vsnid |
|- c e. { c } |
32 |
|
snssi |
|- ( c e. I -> { c } C_ I ) |
33 |
32
|
ad2antrl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> { c } C_ I ) |
34 |
|
dfss4 |
|- ( { c } C_ I <-> ( I \ ( I \ { c } ) ) = { c } ) |
35 |
33 34
|
sylib |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( I \ ( I \ { c } ) ) = { c } ) |
36 |
31 35
|
eleqtrrid |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> c e. ( I \ ( I \ { c } ) ) ) |
37 |
1
|
frlmsca |
|- ( ( R e. Ring /\ I e. V ) -> R = ( Scalar ` F ) ) |
38 |
37
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
39 |
37
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` F ) ) ) |
40 |
39
|
sneqd |
|- ( ( R e. Ring /\ I e. V ) -> { ( 0g ` R ) } = { ( 0g ` ( Scalar ` F ) ) } ) |
41 |
38 40
|
difeq12d |
|- ( ( R e. Ring /\ I e. V ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) |
42 |
41
|
eleq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) <-> b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) |
43 |
42
|
biimpar |
|- ( ( ( R e. Ring /\ I e. V ) /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) -> b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
44 |
43
|
adantrl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
45 |
1 2 4 8 26 17 27 28 29 30 36 44
|
frlmssuvc2 |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> -. ( b ( .s ` F ) ( U ` c ) ) e. { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
46 |
17 8
|
ringelnzr |
|- ( ( R e. Ring /\ b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> R e. NzRing ) |
47 |
28 44 46
|
syl2anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> R e. NzRing ) |
48 |
2 1 4
|
uvcf1 |
|- ( ( R e. NzRing /\ I e. V ) -> U : I -1-1-> ( Base ` F ) ) |
49 |
47 29 48
|
syl2anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> U : I -1-1-> ( Base ` F ) ) |
50 |
|
df-f1 |
|- ( U : I -1-1-> ( Base ` F ) <-> ( U : I --> ( Base ` F ) /\ Fun `' U ) ) |
51 |
50
|
simprbi |
|- ( U : I -1-1-> ( Base ` F ) -> Fun `' U ) |
52 |
|
imadif |
|- ( Fun `' U -> ( U " ( I \ { c } ) ) = ( ( U " I ) \ ( U " { c } ) ) ) |
53 |
49 51 52
|
3syl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( U " ( I \ { c } ) ) = ( ( U " I ) \ ( U " { c } ) ) ) |
54 |
|
f1fn |
|- ( U : I -1-1-> ( Base ` F ) -> U Fn I ) |
55 |
49 54 22
|
3syl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( U " I ) = ran U ) |
56 |
49 54
|
syl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> U Fn I ) |
57 |
|
simprl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> c e. I ) |
58 |
|
fnsnfv |
|- ( ( U Fn I /\ c e. I ) -> { ( U ` c ) } = ( U " { c } ) ) |
59 |
56 57 58
|
syl2anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> { ( U ` c ) } = ( U " { c } ) ) |
60 |
59
|
eqcomd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( U " { c } ) = { ( U ` c ) } ) |
61 |
55 60
|
difeq12d |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( U " I ) \ ( U " { c } ) ) = ( ran U \ { ( U ` c ) } ) ) |
62 |
53 61
|
eqtr2d |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ran U \ { ( U ` c ) } ) = ( U " ( I \ { c } ) ) ) |
63 |
62
|
fveq2d |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) = ( ( LSpan ` F ) ` ( U " ( I \ { c } ) ) ) ) |
64 |
1 2 16 4 17 27
|
frlmsslsp |
|- ( ( R e. Ring /\ I e. V /\ ( I \ { c } ) C_ I ) -> ( ( LSpan ` F ) ` ( U " ( I \ { c } ) ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
65 |
28 29 30 64
|
syl3anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( LSpan ` F ) ` ( U " ( I \ { c } ) ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
66 |
63 65
|
eqtrd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
67 |
45 66
|
neleqtrrd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) |
68 |
67
|
ralrimivva |
|- ( ( R e. Ring /\ I e. V ) -> A. c e. I A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) |
69 |
|
oveq2 |
|- ( a = ( U ` c ) -> ( b ( .s ` F ) a ) = ( b ( .s ` F ) ( U ` c ) ) ) |
70 |
|
sneq |
|- ( a = ( U ` c ) -> { a } = { ( U ` c ) } ) |
71 |
70
|
difeq2d |
|- ( a = ( U ` c ) -> ( ran U \ { a } ) = ( ran U \ { ( U ` c ) } ) ) |
72 |
71
|
fveq2d |
|- ( a = ( U ` c ) -> ( ( LSpan ` F ) ` ( ran U \ { a } ) ) = ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) |
73 |
69 72
|
eleq12d |
|- ( a = ( U ` c ) -> ( ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
74 |
73
|
notbid |
|- ( a = ( U ` c ) -> ( -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
75 |
74
|
ralbidv |
|- ( a = ( U ` c ) -> ( A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
76 |
75
|
ralrn |
|- ( U Fn I -> ( A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> A. c e. I A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
77 |
5 21 76
|
3syl |
|- ( ( R e. Ring /\ I e. V ) -> ( A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> A. c e. I A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
78 |
68 77
|
mpbird |
|- ( ( R e. Ring /\ I e. V ) -> A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) ) |
79 |
1
|
ovexi |
|- F e. _V |
80 |
|
eqid |
|- ( Scalar ` F ) = ( Scalar ` F ) |
81 |
|
eqid |
|- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
82 |
|
eqid |
|- ( 0g ` ( Scalar ` F ) ) = ( 0g ` ( Scalar ` F ) ) |
83 |
4 80 26 81 3 16 82
|
islbs |
|- ( F e. _V -> ( ran U e. J <-> ( ran U C_ ( Base ` F ) /\ ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) /\ A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) ) ) ) |
84 |
79 83
|
ax-mp |
|- ( ran U e. J <-> ( ran U C_ ( Base ` F ) /\ ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) /\ A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) ) ) |
85 |
6 25 78 84
|
syl3anbrc |
|- ( ( R e. Ring /\ I e. V ) -> ran U e. J ) |