| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmval.f |  |-  F = ( R freeLMod I ) | 
						
							| 2 |  | frlmpws.b |  |-  B = ( Base ` F ) | 
						
							| 3 |  | frlmlss.u |  |-  U = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) | 
						
							| 4 | 1 | frlmval |  |-  ( ( R e. Ring /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) | 
						
							| 6 | 2 5 | eqtrid |  |-  ( ( R e. Ring /\ I e. W ) -> B = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) | 
						
							| 7 |  | simpr |  |-  ( ( R e. Ring /\ I e. W ) -> I e. W ) | 
						
							| 8 |  | simpl |  |-  ( ( R e. Ring /\ I e. W ) -> R e. Ring ) | 
						
							| 9 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 10 | 9 | adantr |  |-  ( ( R e. Ring /\ I e. W ) -> ( ringLMod ` R ) e. LMod ) | 
						
							| 11 |  | fconst6g |  |-  ( ( ringLMod ` R ) e. LMod -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( R e. Ring /\ I e. W ) -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) | 
						
							| 13 |  | fvex |  |-  ( ringLMod ` R ) e. _V | 
						
							| 14 | 13 | fvconst2 |  |-  ( i e. I -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = ( Scalar ` ( ringLMod ` R ) ) ) | 
						
							| 17 |  | rlmsca |  |-  ( R e. Ring -> R = ( Scalar ` ( ringLMod ` R ) ) ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) | 
						
							| 19 | 16 18 | eqtr4d |  |-  ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = R ) | 
						
							| 20 |  | eqid |  |-  ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) | 
						
							| 21 |  | eqid |  |-  ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 23 | 7 8 12 19 20 21 22 | dsmmlss |  |-  ( ( R e. Ring /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) e. ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) ) | 
						
							| 24 |  | eqid |  |-  ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) | 
						
							| 25 |  | eqid |  |-  ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) | 
						
							| 26 | 24 25 | pwsval |  |-  ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 27 | 13 26 | mpan |  |-  ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( R e. Ring /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 29 | 17 | eqcomd |  |-  ( R e. Ring -> ( Scalar ` ( ringLMod ` R ) ) = R ) | 
						
							| 30 | 29 | adantr |  |-  ( ( R e. Ring /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = R ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( R e. Ring /\ I e. W ) -> ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) | 
						
							| 32 | 28 31 | eqtr2d |  |-  ( ( R e. Ring /\ I e. W ) -> ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( ( ringLMod ` R ) ^s I ) ) | 
						
							| 33 | 32 | fveq2d |  |-  ( ( R e. Ring /\ I e. W ) -> ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 34 | 33 3 | eqtr4di |  |-  ( ( R e. Ring /\ I e. W ) -> ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = U ) | 
						
							| 35 | 23 34 | eleqtrd |  |-  ( ( R e. Ring /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) e. U ) | 
						
							| 36 | 6 35 | eqeltrd |  |-  ( ( R e. Ring /\ I e. W ) -> B e. U ) |