Step |
Hyp |
Ref |
Expression |
1 |
|
frlmlvec.1 |
|- F = ( R freeLMod I ) |
2 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
3 |
1
|
frlmlmod |
|- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
4 |
2 3
|
sylan |
|- ( ( R e. DivRing /\ I e. W ) -> F e. LMod ) |
5 |
1
|
frlmsca |
|- ( ( R e. DivRing /\ I e. W ) -> R = ( Scalar ` F ) ) |
6 |
|
simpl |
|- ( ( R e. DivRing /\ I e. W ) -> R e. DivRing ) |
7 |
5 6
|
eqeltrrd |
|- ( ( R e. DivRing /\ I e. W ) -> ( Scalar ` F ) e. DivRing ) |
8 |
|
eqid |
|- ( Scalar ` F ) = ( Scalar ` F ) |
9 |
8
|
islvec |
|- ( F e. LVec <-> ( F e. LMod /\ ( Scalar ` F ) e. DivRing ) ) |
10 |
4 7 9
|
sylanbrc |
|- ( ( R e. DivRing /\ I e. W ) -> F e. LVec ) |