| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmphl.y |
|- Y = ( R freeLMod I ) |
| 2 |
|
frlmphl.b |
|- B = ( Base ` R ) |
| 3 |
|
frlmphl.t |
|- .x. = ( .r ` R ) |
| 4 |
|
frlmphl.v |
|- V = ( Base ` Y ) |
| 5 |
|
frlmphl.j |
|- ., = ( .i ` Y ) |
| 6 |
|
frlmphl.o |
|- O = ( 0g ` Y ) |
| 7 |
|
frlmphl.0 |
|- .0. = ( 0g ` R ) |
| 8 |
|
frlmphl.s |
|- .* = ( *r ` R ) |
| 9 |
|
frlmphl.f |
|- ( ph -> R e. Field ) |
| 10 |
|
frlmphl.m |
|- ( ( ph /\ g e. V /\ ( g ., g ) = .0. ) -> g = O ) |
| 11 |
|
frlmphl.u |
|- ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) |
| 12 |
|
frlmphl.i |
|- ( ph -> I e. W ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( ph /\ g e. V /\ h e. V ) -> I e. W ) |
| 14 |
|
simp2 |
|- ( ( ph /\ g e. V /\ h e. V ) -> g e. V ) |
| 15 |
1 2 4
|
frlmbasmap |
|- ( ( I e. W /\ g e. V ) -> g e. ( B ^m I ) ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ph /\ g e. V /\ h e. V ) -> g e. ( B ^m I ) ) |
| 17 |
|
elmapi |
|- ( g e. ( B ^m I ) -> g : I --> B ) |
| 18 |
16 17
|
syl |
|- ( ( ph /\ g e. V /\ h e. V ) -> g : I --> B ) |
| 19 |
18
|
ffnd |
|- ( ( ph /\ g e. V /\ h e. V ) -> g Fn I ) |
| 20 |
|
simp3 |
|- ( ( ph /\ g e. V /\ h e. V ) -> h e. V ) |
| 21 |
1 2 4
|
frlmbasmap |
|- ( ( I e. W /\ h e. V ) -> h e. ( B ^m I ) ) |
| 22 |
13 20 21
|
syl2anc |
|- ( ( ph /\ g e. V /\ h e. V ) -> h e. ( B ^m I ) ) |
| 23 |
|
elmapi |
|- ( h e. ( B ^m I ) -> h : I --> B ) |
| 24 |
22 23
|
syl |
|- ( ( ph /\ g e. V /\ h e. V ) -> h : I --> B ) |
| 25 |
24
|
ffnd |
|- ( ( ph /\ g e. V /\ h e. V ) -> h Fn I ) |
| 26 |
|
inidm |
|- ( I i^i I ) = I |
| 27 |
|
eqidd |
|- ( ( ( ph /\ g e. V /\ h e. V ) /\ x e. I ) -> ( g ` x ) = ( g ` x ) ) |
| 28 |
|
eqidd |
|- ( ( ( ph /\ g e. V /\ h e. V ) /\ x e. I ) -> ( h ` x ) = ( h ` x ) ) |
| 29 |
19 25 13 13 26 27 28
|
offval |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( g oF .x. h ) = ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( ( g oF .x. h ) supp .0. ) = ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) ) |
| 31 |
|
ovexd |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( g oF .x. h ) e. _V ) |
| 32 |
|
funmpt |
|- Fun ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) |
| 33 |
|
funeq |
|- ( ( g oF .x. h ) = ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) -> ( Fun ( g oF .x. h ) <-> Fun ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) ) ) |
| 34 |
32 33
|
mpbiri |
|- ( ( g oF .x. h ) = ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) -> Fun ( g oF .x. h ) ) |
| 35 |
29 34
|
syl |
|- ( ( ph /\ g e. V /\ h e. V ) -> Fun ( g oF .x. h ) ) |
| 36 |
1 7 4
|
frlmbasfsupp |
|- ( ( I e. W /\ g e. V ) -> g finSupp .0. ) |
| 37 |
13 14 36
|
syl2anc |
|- ( ( ph /\ g e. V /\ h e. V ) -> g finSupp .0. ) |
| 38 |
|
isfld |
|- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
| 39 |
9 38
|
sylib |
|- ( ph -> ( R e. DivRing /\ R e. CRing ) ) |
| 40 |
39
|
simpld |
|- ( ph -> R e. DivRing ) |
| 41 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 42 |
40 41
|
syl |
|- ( ph -> R e. Ring ) |
| 43 |
42
|
3ad2ant1 |
|- ( ( ph /\ g e. V /\ h e. V ) -> R e. Ring ) |
| 44 |
2 7
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ g e. V /\ h e. V ) -> .0. e. B ) |
| 46 |
2 3 7
|
ringlz |
|- ( ( R e. Ring /\ x e. B ) -> ( .0. .x. x ) = .0. ) |
| 47 |
43 46
|
sylan |
|- ( ( ( ph /\ g e. V /\ h e. V ) /\ x e. B ) -> ( .0. .x. x ) = .0. ) |
| 48 |
13 45 18 24 47
|
suppofss1d |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( ( g oF .x. h ) supp .0. ) C_ ( g supp .0. ) ) |
| 49 |
|
fsuppsssupp |
|- ( ( ( ( g oF .x. h ) e. _V /\ Fun ( g oF .x. h ) ) /\ ( g finSupp .0. /\ ( ( g oF .x. h ) supp .0. ) C_ ( g supp .0. ) ) ) -> ( g oF .x. h ) finSupp .0. ) |
| 50 |
49
|
fsuppimpd |
|- ( ( ( ( g oF .x. h ) e. _V /\ Fun ( g oF .x. h ) ) /\ ( g finSupp .0. /\ ( ( g oF .x. h ) supp .0. ) C_ ( g supp .0. ) ) ) -> ( ( g oF .x. h ) supp .0. ) e. Fin ) |
| 51 |
31 35 37 48 50
|
syl22anc |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( ( g oF .x. h ) supp .0. ) e. Fin ) |
| 52 |
30 51
|
eqeltrrd |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) e. Fin ) |
| 53 |
13
|
mptexd |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) e. _V ) |
| 54 |
45
|
elexd |
|- ( ( ph /\ g e. V /\ h e. V ) -> .0. e. _V ) |
| 55 |
|
funisfsupp |
|- ( ( Fun ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) /\ ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) e. _V /\ .0. e. _V ) -> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) e. Fin ) ) |
| 56 |
32 53 54 55
|
mp3an2i |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) e. Fin ) ) |
| 57 |
52 56
|
mpbird |
|- ( ( ph /\ g e. V /\ h e. V ) -> ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. ) |