Step |
Hyp |
Ref |
Expression |
1 |
|
frlmplusgval.y |
|- Y = ( R freeLMod I ) |
2 |
|
frlmplusgval.b |
|- B = ( Base ` Y ) |
3 |
|
frlmplusgval.r |
|- ( ph -> R e. V ) |
4 |
|
frlmplusgval.i |
|- ( ph -> I e. W ) |
5 |
|
frlmplusgval.f |
|- ( ph -> F e. B ) |
6 |
|
frlmplusgval.g |
|- ( ph -> G e. B ) |
7 |
|
frlmplusgval.a |
|- .+ = ( +g ` R ) |
8 |
|
frlmplusgval.p |
|- .+b = ( +g ` Y ) |
9 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
10 |
1 9
|
frlmpws |
|- ( ( R e. V /\ I e. W ) -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) |
11 |
3 4 10
|
syl2anc |
|- ( ph -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( +g ` Y ) = ( +g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) ) |
13 |
|
fvex |
|- ( Base ` Y ) e. _V |
14 |
|
eqid |
|- ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) |
15 |
|
eqid |
|- ( +g ` ( ( ringLMod ` R ) ^s I ) ) = ( +g ` ( ( ringLMod ` R ) ^s I ) ) |
16 |
14 15
|
ressplusg |
|- ( ( Base ` Y ) e. _V -> ( +g ` ( ( ringLMod ` R ) ^s I ) ) = ( +g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) ) |
17 |
13 16
|
ax-mp |
|- ( +g ` ( ( ringLMod ` R ) ^s I ) ) = ( +g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) |
18 |
12 8 17
|
3eqtr4g |
|- ( ph -> .+b = ( +g ` ( ( ringLMod ` R ) ^s I ) ) ) |
19 |
18
|
oveqd |
|- ( ph -> ( F .+b G ) = ( F ( +g ` ( ( ringLMod ` R ) ^s I ) ) G ) ) |
20 |
|
eqid |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
21 |
|
eqid |
|- ( Base ` ( ( ringLMod ` R ) ^s I ) ) = ( Base ` ( ( ringLMod ` R ) ^s I ) ) |
22 |
|
fvexd |
|- ( ph -> ( ringLMod ` R ) e. _V ) |
23 |
1 2
|
frlmpws |
|- ( ( R e. V /\ I e. W ) -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
24 |
3 4 23
|
syl2anc |
|- ( ph -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( Base ` Y ) = ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
26 |
2 25
|
eqtrid |
|- ( ph -> B = ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
27 |
|
eqid |
|- ( ( ( ringLMod ` R ) ^s I ) |`s B ) = ( ( ( ringLMod ` R ) ^s I ) |`s B ) |
28 |
27 21
|
ressbasss |
|- ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) C_ ( Base ` ( ( ringLMod ` R ) ^s I ) ) |
29 |
26 28
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
30 |
29 5
|
sseldd |
|- ( ph -> F e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
31 |
29 6
|
sseldd |
|- ( ph -> G e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
32 |
|
rlmplusg |
|- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
33 |
7 32
|
eqtri |
|- .+ = ( +g ` ( ringLMod ` R ) ) |
34 |
20 21 22 4 30 31 33 15
|
pwsplusgval |
|- ( ph -> ( F ( +g ` ( ( ringLMod ` R ) ^s I ) ) G ) = ( F oF .+ G ) ) |
35 |
19 34
|
eqtrd |
|- ( ph -> ( F .+b G ) = ( F oF .+ G ) ) |