Step |
Hyp |
Ref |
Expression |
1 |
|
frlmplusgvalb.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmplusgvalb.b |
|- B = ( Base ` F ) |
3 |
|
frlmplusgvalb.i |
|- ( ph -> I e. W ) |
4 |
|
frlmplusgvalb.x |
|- ( ph -> X e. B ) |
5 |
|
frlmplusgvalb.z |
|- ( ph -> Z e. B ) |
6 |
|
frlmplusgvalb.r |
|- ( ph -> R e. Ring ) |
7 |
|
frlmplusgvalb.y |
|- ( ph -> Y e. B ) |
8 |
|
frlmplusgvalb.a |
|- .+ = ( +g ` R ) |
9 |
|
frlmplusgvalb.p |
|- .+b = ( +g ` F ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
1 10 2
|
frlmbasmap |
|- ( ( I e. W /\ Z e. B ) -> Z e. ( ( Base ` R ) ^m I ) ) |
12 |
3 5 11
|
syl2anc |
|- ( ph -> Z e. ( ( Base ` R ) ^m I ) ) |
13 |
|
fvexd |
|- ( ph -> ( Base ` R ) e. _V ) |
14 |
13 3
|
elmapd |
|- ( ph -> ( Z e. ( ( Base ` R ) ^m I ) <-> Z : I --> ( Base ` R ) ) ) |
15 |
12 14
|
mpbid |
|- ( ph -> Z : I --> ( Base ` R ) ) |
16 |
15
|
ffnd |
|- ( ph -> Z Fn I ) |
17 |
1
|
frlmlmod |
|- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
18 |
6 3 17
|
syl2anc |
|- ( ph -> F e. LMod ) |
19 |
|
lmodgrp |
|- ( F e. LMod -> F e. Grp ) |
20 |
18 19
|
syl |
|- ( ph -> F e. Grp ) |
21 |
2 9
|
grpcl |
|- ( ( F e. Grp /\ X e. B /\ Y e. B ) -> ( X .+b Y ) e. B ) |
22 |
20 4 7 21
|
syl3anc |
|- ( ph -> ( X .+b Y ) e. B ) |
23 |
1 10 2
|
frlmbasmap |
|- ( ( I e. W /\ ( X .+b Y ) e. B ) -> ( X .+b Y ) e. ( ( Base ` R ) ^m I ) ) |
24 |
3 22 23
|
syl2anc |
|- ( ph -> ( X .+b Y ) e. ( ( Base ` R ) ^m I ) ) |
25 |
13 3
|
elmapd |
|- ( ph -> ( ( X .+b Y ) e. ( ( Base ` R ) ^m I ) <-> ( X .+b Y ) : I --> ( Base ` R ) ) ) |
26 |
24 25
|
mpbid |
|- ( ph -> ( X .+b Y ) : I --> ( Base ` R ) ) |
27 |
26
|
ffnd |
|- ( ph -> ( X .+b Y ) Fn I ) |
28 |
|
eqfnfv |
|- ( ( Z Fn I /\ ( X .+b Y ) Fn I ) -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X .+b Y ) ` i ) ) ) |
29 |
16 27 28
|
syl2anc |
|- ( ph -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X .+b Y ) ` i ) ) ) |
30 |
6
|
adantr |
|- ( ( ph /\ i e. I ) -> R e. Ring ) |
31 |
3
|
adantr |
|- ( ( ph /\ i e. I ) -> I e. W ) |
32 |
4
|
adantr |
|- ( ( ph /\ i e. I ) -> X e. B ) |
33 |
7
|
adantr |
|- ( ( ph /\ i e. I ) -> Y e. B ) |
34 |
|
simpr |
|- ( ( ph /\ i e. I ) -> i e. I ) |
35 |
1 2 30 31 32 33 34 8 9
|
frlmvplusgvalc |
|- ( ( ph /\ i e. I ) -> ( ( X .+b Y ) ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) |
36 |
35
|
eqeq2d |
|- ( ( ph /\ i e. I ) -> ( ( Z ` i ) = ( ( X .+b Y ) ` i ) <-> ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |
37 |
36
|
ralbidva |
|- ( ph -> ( A. i e. I ( Z ` i ) = ( ( X .+b Y ) ` i ) <-> A. i e. I ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |
38 |
29 37
|
bitrd |
|- ( ph -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |