Step |
Hyp |
Ref |
Expression |
1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmpws.b |
|- B = ( Base ` F ) |
3 |
|
eqid |
|- ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
4 |
3
|
dsmmval2 |
|- ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) |
5 |
|
rlmsca |
|- ( R e. V -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
6 |
5
|
adantr |
|- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
7 |
6
|
oveq1d |
|- ( ( R e. V /\ I e. W ) -> ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
8 |
1
|
frlmval |
|- ( ( R e. V /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
9 |
8
|
eqcomd |
|- ( ( R e. V /\ I e. W ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = F ) |
10 |
9
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` F ) ) |
11 |
10 2
|
eqtr4di |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = B ) |
12 |
7 11
|
oveq12d |
|- ( ( R e. V /\ I e. W ) -> ( ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) = ( ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s B ) ) |
13 |
4 12
|
eqtrid |
|- ( ( R e. V /\ I e. W ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s B ) ) |
14 |
|
fvex |
|- ( ringLMod ` R ) e. _V |
15 |
|
eqid |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
16 |
|
eqid |
|- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
17 |
15 16
|
pwsval |
|- ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
18 |
14 17
|
mpan |
|- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
19 |
18
|
adantl |
|- ( ( R e. V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
20 |
19
|
oveq1d |
|- ( ( R e. V /\ I e. W ) -> ( ( ( ringLMod ` R ) ^s I ) |`s B ) = ( ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s B ) ) |
21 |
13 8 20
|
3eqtr4d |
|- ( ( R e. V /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |