Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | |- F = ( R freeLMod I ) |
|
| frlmrcl.b | |- B = ( Base ` F ) |
||
| Assertion | frlmrcl | |- ( X e. B -> R e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmrcl.b | |- B = ( Base ` F ) |
|
| 3 | df-frlm | |- freeLMod = ( r e. _V , i e. _V |-> ( r (+)m ( i X. { ( ringLMod ` r ) } ) ) ) |
|
| 4 | 3 | reldmmpo | |- Rel dom freeLMod |
| 5 | 1 2 4 | strov2rcl | |- ( X e. B -> R e. _V ) |