Metamath Proof Explorer


Theorem frlmrcl

Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f
|- F = ( R freeLMod I )
frlmrcl.b
|- B = ( Base ` F )
Assertion frlmrcl
|- ( X e. B -> R e. _V )

Proof

Step Hyp Ref Expression
1 frlmval.f
 |-  F = ( R freeLMod I )
2 frlmrcl.b
 |-  B = ( Base ` F )
3 df-frlm
 |-  freeLMod = ( r e. _V , i e. _V |-> ( r (+)m ( i X. { ( ringLMod ` r ) } ) ) )
4 3 reldmmpo
 |-  Rel dom freeLMod
5 1 2 4 strov2rcl
 |-  ( X e. B -> R e. _V )