| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
| 2 |
|
fvex |
|- ( ringLMod ` R ) e. _V |
| 3 |
|
eqid |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
| 4 |
|
eqid |
|- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
| 5 |
3 4
|
pwssca |
|- ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 6 |
2 5
|
mpan |
|- ( I e. W -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 7 |
6
|
adantl |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 8 |
|
fvex |
|- ( Base ` F ) e. _V |
| 9 |
|
eqid |
|- ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) |
| 10 |
|
eqid |
|- ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) |
| 11 |
9 10
|
resssca |
|- ( ( Base ` F ) e. _V -> ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 12 |
8 11
|
ax-mp |
|- ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) |
| 13 |
7 12
|
eqtrdi |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 14 |
|
rlmsca |
|- ( R e. V -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 15 |
14
|
adantr |
|- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 16 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 17 |
1 16
|
frlmpws |
|- ( ( R e. V /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) |
| 18 |
17
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` F ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 19 |
13 15 18
|
3eqtr4d |
|- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` F ) ) |