Step |
Hyp |
Ref |
Expression |
1 |
|
frlmsslss.y |
|- Y = ( R freeLMod I ) |
2 |
|
frlmsslss.u |
|- U = ( LSubSp ` Y ) |
3 |
|
frlmsslss.b |
|- B = ( Base ` Y ) |
4 |
|
frlmsslss.z |
|- .0. = ( 0g ` R ) |
5 |
|
frlmsslss2.c |
|- C = { x e. B | ( x supp .0. ) C_ J } |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
1 6 3
|
frlmbasf |
|- ( ( I e. V /\ x e. B ) -> x : I --> ( Base ` R ) ) |
8 |
7
|
3ad2antl2 |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x : I --> ( Base ` R ) ) |
9 |
8
|
ffnd |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x Fn I ) |
10 |
|
simpl3 |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> J C_ I ) |
11 |
|
undif |
|- ( J C_ I <-> ( J u. ( I \ J ) ) = I ) |
12 |
10 11
|
sylib |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( J u. ( I \ J ) ) = I ) |
13 |
12
|
fneq2d |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( x Fn ( J u. ( I \ J ) ) <-> x Fn I ) ) |
14 |
9 13
|
mpbird |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x Fn ( J u. ( I \ J ) ) ) |
15 |
|
simpr |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x e. B ) |
16 |
4
|
fvexi |
|- .0. e. _V |
17 |
16
|
a1i |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> .0. e. _V ) |
18 |
|
disjdif |
|- ( J i^i ( I \ J ) ) = (/) |
19 |
18
|
a1i |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( J i^i ( I \ J ) ) = (/) ) |
20 |
|
fnsuppres |
|- ( ( x Fn ( J u. ( I \ J ) ) /\ ( x e. B /\ .0. e. _V ) /\ ( J i^i ( I \ J ) ) = (/) ) -> ( ( x supp .0. ) C_ J <-> ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) ) ) |
21 |
14 15 17 19 20
|
syl121anc |
|- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( ( x supp .0. ) C_ J <-> ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) ) ) |
22 |
21
|
rabbidva |
|- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> { x e. B | ( x supp .0. ) C_ J } = { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } ) |
23 |
5 22
|
eqtrid |
|- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C = { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } ) |
24 |
|
difssd |
|- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> ( I \ J ) C_ I ) |
25 |
|
eqid |
|- { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } = { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } |
26 |
1 2 3 4 25
|
frlmsslss |
|- ( ( R e. Ring /\ I e. V /\ ( I \ J ) C_ I ) -> { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } e. U ) |
27 |
24 26
|
syld3an3 |
|- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } e. U ) |
28 |
23 27
|
eqeltrd |
|- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. U ) |