Step |
Hyp |
Ref |
Expression |
1 |
|
frlmssuvc1.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmssuvc1.u |
|- U = ( R unitVec I ) |
3 |
|
frlmssuvc1.b |
|- B = ( Base ` F ) |
4 |
|
frlmssuvc1.k |
|- K = ( Base ` R ) |
5 |
|
frlmssuvc1.t |
|- .x. = ( .s ` F ) |
6 |
|
frlmssuvc1.z |
|- .0. = ( 0g ` R ) |
7 |
|
frlmssuvc1.c |
|- C = { x e. B | ( x supp .0. ) C_ J } |
8 |
|
frlmssuvc1.r |
|- ( ph -> R e. Ring ) |
9 |
|
frlmssuvc1.i |
|- ( ph -> I e. V ) |
10 |
|
frlmssuvc1.j |
|- ( ph -> J C_ I ) |
11 |
|
frlmssuvc1.l |
|- ( ph -> L e. J ) |
12 |
|
frlmssuvc1.x |
|- ( ph -> X e. K ) |
13 |
1
|
frlmlmod |
|- ( ( R e. Ring /\ I e. V ) -> F e. LMod ) |
14 |
8 9 13
|
syl2anc |
|- ( ph -> F e. LMod ) |
15 |
|
eqid |
|- ( LSubSp ` F ) = ( LSubSp ` F ) |
16 |
1 15 3 6 7
|
frlmsslss2 |
|- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. ( LSubSp ` F ) ) |
17 |
8 9 10 16
|
syl3anc |
|- ( ph -> C e. ( LSubSp ` F ) ) |
18 |
1
|
frlmsca |
|- ( ( R e. Ring /\ I e. V ) -> R = ( Scalar ` F ) ) |
19 |
8 9 18
|
syl2anc |
|- ( ph -> R = ( Scalar ` F ) ) |
20 |
19
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
21 |
4 20
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` F ) ) ) |
22 |
12 21
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( Scalar ` F ) ) ) |
23 |
2 1 3
|
uvcff |
|- ( ( R e. Ring /\ I e. V ) -> U : I --> B ) |
24 |
8 9 23
|
syl2anc |
|- ( ph -> U : I --> B ) |
25 |
10 11
|
sseldd |
|- ( ph -> L e. I ) |
26 |
24 25
|
ffvelrnd |
|- ( ph -> ( U ` L ) e. B ) |
27 |
1 4 3
|
frlmbasf |
|- ( ( I e. V /\ ( U ` L ) e. B ) -> ( U ` L ) : I --> K ) |
28 |
9 26 27
|
syl2anc |
|- ( ph -> ( U ` L ) : I --> K ) |
29 |
8
|
adantr |
|- ( ( ph /\ x e. ( I \ J ) ) -> R e. Ring ) |
30 |
9
|
adantr |
|- ( ( ph /\ x e. ( I \ J ) ) -> I e. V ) |
31 |
25
|
adantr |
|- ( ( ph /\ x e. ( I \ J ) ) -> L e. I ) |
32 |
|
eldifi |
|- ( x e. ( I \ J ) -> x e. I ) |
33 |
32
|
adantl |
|- ( ( ph /\ x e. ( I \ J ) ) -> x e. I ) |
34 |
|
disjdif |
|- ( J i^i ( I \ J ) ) = (/) |
35 |
|
simpr |
|- ( ( ph /\ x e. ( I \ J ) ) -> x e. ( I \ J ) ) |
36 |
|
disjne |
|- ( ( ( J i^i ( I \ J ) ) = (/) /\ L e. J /\ x e. ( I \ J ) ) -> L =/= x ) |
37 |
34 11 35 36
|
mp3an2ani |
|- ( ( ph /\ x e. ( I \ J ) ) -> L =/= x ) |
38 |
2 29 30 31 33 37 6
|
uvcvv0 |
|- ( ( ph /\ x e. ( I \ J ) ) -> ( ( U ` L ) ` x ) = .0. ) |
39 |
28 38
|
suppss |
|- ( ph -> ( ( U ` L ) supp .0. ) C_ J ) |
40 |
|
oveq1 |
|- ( x = ( U ` L ) -> ( x supp .0. ) = ( ( U ` L ) supp .0. ) ) |
41 |
40
|
sseq1d |
|- ( x = ( U ` L ) -> ( ( x supp .0. ) C_ J <-> ( ( U ` L ) supp .0. ) C_ J ) ) |
42 |
41 7
|
elrab2 |
|- ( ( U ` L ) e. C <-> ( ( U ` L ) e. B /\ ( ( U ` L ) supp .0. ) C_ J ) ) |
43 |
26 39 42
|
sylanbrc |
|- ( ph -> ( U ` L ) e. C ) |
44 |
|
eqid |
|- ( Scalar ` F ) = ( Scalar ` F ) |
45 |
|
eqid |
|- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
46 |
44 5 45 15
|
lssvscl |
|- ( ( ( F e. LMod /\ C e. ( LSubSp ` F ) ) /\ ( X e. ( Base ` ( Scalar ` F ) ) /\ ( U ` L ) e. C ) ) -> ( X .x. ( U ` L ) ) e. C ) |
47 |
14 17 22 43 46
|
syl22anc |
|- ( ph -> ( X .x. ( U ` L ) ) e. C ) |