| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							frlmssuvc1.f | 
							 |-  F = ( R freeLMod I )  | 
						
						
							| 2 | 
							
								
							 | 
							frlmssuvc1.u | 
							 |-  U = ( R unitVec I )  | 
						
						
							| 3 | 
							
								
							 | 
							frlmssuvc1.b | 
							 |-  B = ( Base ` F )  | 
						
						
							| 4 | 
							
								
							 | 
							frlmssuvc1.k | 
							 |-  K = ( Base ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							frlmssuvc1.t | 
							 |-  .x. = ( .s ` F )  | 
						
						
							| 6 | 
							
								
							 | 
							frlmssuvc1.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							frlmssuvc1.c | 
							 |-  C = { x e. B | ( x supp .0. ) C_ J } | 
						
						
							| 8 | 
							
								
							 | 
							frlmssuvc1.r | 
							 |-  ( ph -> R e. Ring )  | 
						
						
							| 9 | 
							
								
							 | 
							frlmssuvc1.i | 
							 |-  ( ph -> I e. V )  | 
						
						
							| 10 | 
							
								
							 | 
							frlmssuvc1.j | 
							 |-  ( ph -> J C_ I )  | 
						
						
							| 11 | 
							
								
							 | 
							frlmssuvc1.l | 
							 |-  ( ph -> L e. J )  | 
						
						
							| 12 | 
							
								
							 | 
							frlmssuvc1.x | 
							 |-  ( ph -> X e. K )  | 
						
						
							| 13 | 
							
								1
							 | 
							frlmlmod | 
							 |-  ( ( R e. Ring /\ I e. V ) -> F e. LMod )  | 
						
						
							| 14 | 
							
								8 9 13
							 | 
							syl2anc | 
							 |-  ( ph -> F e. LMod )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( LSubSp ` F ) = ( LSubSp ` F )  | 
						
						
							| 16 | 
							
								1 15 3 6 7
							 | 
							frlmsslss2 | 
							 |-  ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. ( LSubSp ` F ) )  | 
						
						
							| 17 | 
							
								8 9 10 16
							 | 
							syl3anc | 
							 |-  ( ph -> C e. ( LSubSp ` F ) )  | 
						
						
							| 18 | 
							
								1
							 | 
							frlmsca | 
							 |-  ( ( R e. Ring /\ I e. V ) -> R = ( Scalar ` F ) )  | 
						
						
							| 19 | 
							
								8 9 18
							 | 
							syl2anc | 
							 |-  ( ph -> R = ( Scalar ` F ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							fveq2d | 
							 |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							eqtrid | 
							 |-  ( ph -> K = ( Base ` ( Scalar ` F ) ) )  | 
						
						
							| 22 | 
							
								12 21
							 | 
							eleqtrd | 
							 |-  ( ph -> X e. ( Base ` ( Scalar ` F ) ) )  | 
						
						
							| 23 | 
							
								2 1 3
							 | 
							uvcff | 
							 |-  ( ( R e. Ring /\ I e. V ) -> U : I --> B )  | 
						
						
							| 24 | 
							
								8 9 23
							 | 
							syl2anc | 
							 |-  ( ph -> U : I --> B )  | 
						
						
							| 25 | 
							
								10 11
							 | 
							sseldd | 
							 |-  ( ph -> L e. I )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( U ` L ) e. B )  | 
						
						
							| 27 | 
							
								1 4 3
							 | 
							frlmbasf | 
							 |-  ( ( I e. V /\ ( U ` L ) e. B ) -> ( U ` L ) : I --> K )  | 
						
						
							| 28 | 
							
								9 26 27
							 | 
							syl2anc | 
							 |-  ( ph -> ( U ` L ) : I --> K )  | 
						
						
							| 29 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> R e. Ring )  | 
						
						
							| 30 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> I e. V )  | 
						
						
							| 31 | 
							
								25
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> L e. I )  | 
						
						
							| 32 | 
							
								
							 | 
							eldifi | 
							 |-  ( x e. ( I \ J ) -> x e. I )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> x e. I )  | 
						
						
							| 34 | 
							
								
							 | 
							disjdif | 
							 |-  ( J i^i ( I \ J ) ) = (/)  | 
						
						
							| 35 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> x e. ( I \ J ) )  | 
						
						
							| 36 | 
							
								
							 | 
							disjne | 
							 |-  ( ( ( J i^i ( I \ J ) ) = (/) /\ L e. J /\ x e. ( I \ J ) ) -> L =/= x )  | 
						
						
							| 37 | 
							
								34 11 35 36
							 | 
							mp3an2ani | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> L =/= x )  | 
						
						
							| 38 | 
							
								2 29 30 31 33 37 6
							 | 
							uvcvv0 | 
							 |-  ( ( ph /\ x e. ( I \ J ) ) -> ( ( U ` L ) ` x ) = .0. )  | 
						
						
							| 39 | 
							
								28 38
							 | 
							suppss | 
							 |-  ( ph -> ( ( U ` L ) supp .0. ) C_ J )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = ( U ` L ) -> ( x supp .0. ) = ( ( U ` L ) supp .0. ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							sseq1d | 
							 |-  ( x = ( U ` L ) -> ( ( x supp .0. ) C_ J <-> ( ( U ` L ) supp .0. ) C_ J ) )  | 
						
						
							| 42 | 
							
								41 7
							 | 
							elrab2 | 
							 |-  ( ( U ` L ) e. C <-> ( ( U ` L ) e. B /\ ( ( U ` L ) supp .0. ) C_ J ) )  | 
						
						
							| 43 | 
							
								26 39 42
							 | 
							sylanbrc | 
							 |-  ( ph -> ( U ` L ) e. C )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							 |-  ( Scalar ` F ) = ( Scalar ` F )  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) )  | 
						
						
							| 46 | 
							
								44 5 45 15
							 | 
							lssvscl | 
							 |-  ( ( ( F e. LMod /\ C e. ( LSubSp ` F ) ) /\ ( X e. ( Base ` ( Scalar ` F ) ) /\ ( U ` L ) e. C ) ) -> ( X .x. ( U ` L ) ) e. C )  | 
						
						
							| 47 | 
							
								14 17 22 43 46
							 | 
							syl22anc | 
							 |-  ( ph -> ( X .x. ( U ` L ) ) e. C )  |