Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmup.b |
|- B = ( Base ` F ) |
3 |
|
frlmup.c |
|- C = ( Base ` T ) |
4 |
|
frlmup.v |
|- .x. = ( .s ` T ) |
5 |
|
frlmup.e |
|- E = ( x e. B |-> ( T gsum ( x oF .x. A ) ) ) |
6 |
|
frlmup.t |
|- ( ph -> T e. LMod ) |
7 |
|
frlmup.i |
|- ( ph -> I e. X ) |
8 |
|
frlmup.r |
|- ( ph -> R = ( Scalar ` T ) ) |
9 |
|
frlmup.a |
|- ( ph -> A : I --> C ) |
10 |
|
eqid |
|- ( .s ` F ) = ( .s ` F ) |
11 |
|
eqid |
|- ( Scalar ` F ) = ( Scalar ` F ) |
12 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
13 |
|
eqid |
|- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
14 |
12
|
lmodring |
|- ( T e. LMod -> ( Scalar ` T ) e. Ring ) |
15 |
6 14
|
syl |
|- ( ph -> ( Scalar ` T ) e. Ring ) |
16 |
8 15
|
eqeltrd |
|- ( ph -> R e. Ring ) |
17 |
1
|
frlmlmod |
|- ( ( R e. Ring /\ I e. X ) -> F e. LMod ) |
18 |
16 7 17
|
syl2anc |
|- ( ph -> F e. LMod ) |
19 |
1
|
frlmsca |
|- ( ( R e. Ring /\ I e. X ) -> R = ( Scalar ` F ) ) |
20 |
16 7 19
|
syl2anc |
|- ( ph -> R = ( Scalar ` F ) ) |
21 |
8 20
|
eqtr3d |
|- ( ph -> ( Scalar ` T ) = ( Scalar ` F ) ) |
22 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
23 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
24 |
|
lmodgrp |
|- ( F e. LMod -> F e. Grp ) |
25 |
18 24
|
syl |
|- ( ph -> F e. Grp ) |
26 |
|
lmodgrp |
|- ( T e. LMod -> T e. Grp ) |
27 |
6 26
|
syl |
|- ( ph -> T e. Grp ) |
28 |
|
eleq1w |
|- ( z = x -> ( z e. B <-> x e. B ) ) |
29 |
28
|
anbi2d |
|- ( z = x -> ( ( ph /\ z e. B ) <-> ( ph /\ x e. B ) ) ) |
30 |
|
oveq1 |
|- ( z = x -> ( z oF .x. A ) = ( x oF .x. A ) ) |
31 |
30
|
oveq2d |
|- ( z = x -> ( T gsum ( z oF .x. A ) ) = ( T gsum ( x oF .x. A ) ) ) |
32 |
31
|
eleq1d |
|- ( z = x -> ( ( T gsum ( z oF .x. A ) ) e. C <-> ( T gsum ( x oF .x. A ) ) e. C ) ) |
33 |
29 32
|
imbi12d |
|- ( z = x -> ( ( ( ph /\ z e. B ) -> ( T gsum ( z oF .x. A ) ) e. C ) <-> ( ( ph /\ x e. B ) -> ( T gsum ( x oF .x. A ) ) e. C ) ) ) |
34 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
35 |
|
lmodcmn |
|- ( T e. LMod -> T e. CMnd ) |
36 |
6 35
|
syl |
|- ( ph -> T e. CMnd ) |
37 |
36
|
adantr |
|- ( ( ph /\ z e. B ) -> T e. CMnd ) |
38 |
7
|
adantr |
|- ( ( ph /\ z e. B ) -> I e. X ) |
39 |
6
|
ad2antrr |
|- ( ( ( ph /\ z e. B ) /\ ( x e. ( Base ` R ) /\ y e. C ) ) -> T e. LMod ) |
40 |
|
simprl |
|- ( ( ( ph /\ z e. B ) /\ ( x e. ( Base ` R ) /\ y e. C ) ) -> x e. ( Base ` R ) ) |
41 |
8
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` T ) ) ) |
42 |
41
|
ad2antrr |
|- ( ( ( ph /\ z e. B ) /\ ( x e. ( Base ` R ) /\ y e. C ) ) -> ( Base ` R ) = ( Base ` ( Scalar ` T ) ) ) |
43 |
40 42
|
eleqtrd |
|- ( ( ( ph /\ z e. B ) /\ ( x e. ( Base ` R ) /\ y e. C ) ) -> x e. ( Base ` ( Scalar ` T ) ) ) |
44 |
|
simprr |
|- ( ( ( ph /\ z e. B ) /\ ( x e. ( Base ` R ) /\ y e. C ) ) -> y e. C ) |
45 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
46 |
3 12 4 45
|
lmodvscl |
|- ( ( T e. LMod /\ x e. ( Base ` ( Scalar ` T ) ) /\ y e. C ) -> ( x .x. y ) e. C ) |
47 |
39 43 44 46
|
syl3anc |
|- ( ( ( ph /\ z e. B ) /\ ( x e. ( Base ` R ) /\ y e. C ) ) -> ( x .x. y ) e. C ) |
48 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
49 |
1 48 2
|
frlmbasf |
|- ( ( I e. X /\ z e. B ) -> z : I --> ( Base ` R ) ) |
50 |
7 49
|
sylan |
|- ( ( ph /\ z e. B ) -> z : I --> ( Base ` R ) ) |
51 |
9
|
adantr |
|- ( ( ph /\ z e. B ) -> A : I --> C ) |
52 |
|
inidm |
|- ( I i^i I ) = I |
53 |
47 50 51 38 38 52
|
off |
|- ( ( ph /\ z e. B ) -> ( z oF .x. A ) : I --> C ) |
54 |
|
ovexd |
|- ( ( ph /\ z e. B ) -> ( z oF .x. A ) e. _V ) |
55 |
53
|
ffund |
|- ( ( ph /\ z e. B ) -> Fun ( z oF .x. A ) ) |
56 |
|
fvexd |
|- ( ( ph /\ z e. B ) -> ( 0g ` T ) e. _V ) |
57 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
58 |
1 57 2
|
frlmbasfsupp |
|- ( ( I e. X /\ z e. B ) -> z finSupp ( 0g ` R ) ) |
59 |
7 58
|
sylan |
|- ( ( ph /\ z e. B ) -> z finSupp ( 0g ` R ) ) |
60 |
8
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` T ) ) ) |
61 |
60
|
eqcomd |
|- ( ph -> ( 0g ` ( Scalar ` T ) ) = ( 0g ` R ) ) |
62 |
61
|
breq2d |
|- ( ph -> ( z finSupp ( 0g ` ( Scalar ` T ) ) <-> z finSupp ( 0g ` R ) ) ) |
63 |
62
|
adantr |
|- ( ( ph /\ z e. B ) -> ( z finSupp ( 0g ` ( Scalar ` T ) ) <-> z finSupp ( 0g ` R ) ) ) |
64 |
59 63
|
mpbird |
|- ( ( ph /\ z e. B ) -> z finSupp ( 0g ` ( Scalar ` T ) ) ) |
65 |
64
|
fsuppimpd |
|- ( ( ph /\ z e. B ) -> ( z supp ( 0g ` ( Scalar ` T ) ) ) e. Fin ) |
66 |
|
ssidd |
|- ( ( ph /\ z e. B ) -> ( z supp ( 0g ` ( Scalar ` T ) ) ) C_ ( z supp ( 0g ` ( Scalar ` T ) ) ) ) |
67 |
6
|
ad2antrr |
|- ( ( ( ph /\ z e. B ) /\ w e. C ) -> T e. LMod ) |
68 |
|
eqid |
|- ( 0g ` ( Scalar ` T ) ) = ( 0g ` ( Scalar ` T ) ) |
69 |
3 12 4 68 34
|
lmod0vs |
|- ( ( T e. LMod /\ w e. C ) -> ( ( 0g ` ( Scalar ` T ) ) .x. w ) = ( 0g ` T ) ) |
70 |
67 69
|
sylancom |
|- ( ( ( ph /\ z e. B ) /\ w e. C ) -> ( ( 0g ` ( Scalar ` T ) ) .x. w ) = ( 0g ` T ) ) |
71 |
|
fvexd |
|- ( ( ph /\ z e. B ) -> ( 0g ` ( Scalar ` T ) ) e. _V ) |
72 |
66 70 50 51 38 71
|
suppssof1 |
|- ( ( ph /\ z e. B ) -> ( ( z oF .x. A ) supp ( 0g ` T ) ) C_ ( z supp ( 0g ` ( Scalar ` T ) ) ) ) |
73 |
|
suppssfifsupp |
|- ( ( ( ( z oF .x. A ) e. _V /\ Fun ( z oF .x. A ) /\ ( 0g ` T ) e. _V ) /\ ( ( z supp ( 0g ` ( Scalar ` T ) ) ) e. Fin /\ ( ( z oF .x. A ) supp ( 0g ` T ) ) C_ ( z supp ( 0g ` ( Scalar ` T ) ) ) ) ) -> ( z oF .x. A ) finSupp ( 0g ` T ) ) |
74 |
54 55 56 65 72 73
|
syl32anc |
|- ( ( ph /\ z e. B ) -> ( z oF .x. A ) finSupp ( 0g ` T ) ) |
75 |
3 34 37 38 53 74
|
gsumcl |
|- ( ( ph /\ z e. B ) -> ( T gsum ( z oF .x. A ) ) e. C ) |
76 |
33 75
|
chvarvv |
|- ( ( ph /\ x e. B ) -> ( T gsum ( x oF .x. A ) ) e. C ) |
77 |
76 5
|
fmptd |
|- ( ph -> E : B --> C ) |
78 |
36
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> T e. CMnd ) |
79 |
7
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> I e. X ) |
80 |
|
eleq1w |
|- ( z = y -> ( z e. B <-> y e. B ) ) |
81 |
80
|
anbi2d |
|- ( z = y -> ( ( ph /\ z e. B ) <-> ( ph /\ y e. B ) ) ) |
82 |
|
oveq1 |
|- ( z = y -> ( z oF .x. A ) = ( y oF .x. A ) ) |
83 |
82
|
feq1d |
|- ( z = y -> ( ( z oF .x. A ) : I --> C <-> ( y oF .x. A ) : I --> C ) ) |
84 |
81 83
|
imbi12d |
|- ( z = y -> ( ( ( ph /\ z e. B ) -> ( z oF .x. A ) : I --> C ) <-> ( ( ph /\ y e. B ) -> ( y oF .x. A ) : I --> C ) ) ) |
85 |
84 53
|
chvarvv |
|- ( ( ph /\ y e. B ) -> ( y oF .x. A ) : I --> C ) |
86 |
85
|
adantrr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y oF .x. A ) : I --> C ) |
87 |
53
|
adantrl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( z oF .x. A ) : I --> C ) |
88 |
82
|
breq1d |
|- ( z = y -> ( ( z oF .x. A ) finSupp ( 0g ` T ) <-> ( y oF .x. A ) finSupp ( 0g ` T ) ) ) |
89 |
81 88
|
imbi12d |
|- ( z = y -> ( ( ( ph /\ z e. B ) -> ( z oF .x. A ) finSupp ( 0g ` T ) ) <-> ( ( ph /\ y e. B ) -> ( y oF .x. A ) finSupp ( 0g ` T ) ) ) ) |
90 |
89 74
|
chvarvv |
|- ( ( ph /\ y e. B ) -> ( y oF .x. A ) finSupp ( 0g ` T ) ) |
91 |
90
|
adantrr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y oF .x. A ) finSupp ( 0g ` T ) ) |
92 |
74
|
adantrl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( z oF .x. A ) finSupp ( 0g ` T ) ) |
93 |
3 34 23 78 79 86 87 91 92
|
gsumadd |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( T gsum ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ) = ( ( T gsum ( y oF .x. A ) ) ( +g ` T ) ( T gsum ( z oF .x. A ) ) ) ) |
94 |
2 22
|
lmodvacl |
|- ( ( F e. LMod /\ y e. B /\ z e. B ) -> ( y ( +g ` F ) z ) e. B ) |
95 |
94
|
3expb |
|- ( ( F e. LMod /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` F ) z ) e. B ) |
96 |
18 95
|
sylan |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` F ) z ) e. B ) |
97 |
|
oveq1 |
|- ( x = ( y ( +g ` F ) z ) -> ( x oF .x. A ) = ( ( y ( +g ` F ) z ) oF .x. A ) ) |
98 |
97
|
oveq2d |
|- ( x = ( y ( +g ` F ) z ) -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( ( y ( +g ` F ) z ) oF .x. A ) ) ) |
99 |
|
ovex |
|- ( T gsum ( ( y ( +g ` F ) z ) oF .x. A ) ) e. _V |
100 |
98 5 99
|
fvmpt |
|- ( ( y ( +g ` F ) z ) e. B -> ( E ` ( y ( +g ` F ) z ) ) = ( T gsum ( ( y ( +g ` F ) z ) oF .x. A ) ) ) |
101 |
96 100
|
syl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( E ` ( y ( +g ` F ) z ) ) = ( T gsum ( ( y ( +g ` F ) z ) oF .x. A ) ) ) |
102 |
16
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> R e. Ring ) |
103 |
|
simprl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> y e. B ) |
104 |
|
simprr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> z e. B ) |
105 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
106 |
1 2 102 79 103 104 105 22
|
frlmplusgval |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` F ) z ) = ( y oF ( +g ` R ) z ) ) |
107 |
106
|
oveq1d |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( +g ` F ) z ) oF .x. A ) = ( ( y oF ( +g ` R ) z ) oF .x. A ) ) |
108 |
1 48 2
|
frlmbasf |
|- ( ( I e. X /\ y e. B ) -> y : I --> ( Base ` R ) ) |
109 |
7 108
|
sylan |
|- ( ( ph /\ y e. B ) -> y : I --> ( Base ` R ) ) |
110 |
109
|
adantrr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> y : I --> ( Base ` R ) ) |
111 |
110
|
ffnd |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> y Fn I ) |
112 |
50
|
adantrl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> z : I --> ( Base ` R ) ) |
113 |
112
|
ffnd |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> z Fn I ) |
114 |
111 113 79 79 52
|
offn |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y oF ( +g ` R ) z ) Fn I ) |
115 |
9
|
ffnd |
|- ( ph -> A Fn I ) |
116 |
115
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> A Fn I ) |
117 |
114 116 79 79 52
|
offn |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y oF ( +g ` R ) z ) oF .x. A ) Fn I ) |
118 |
85
|
ffnd |
|- ( ( ph /\ y e. B ) -> ( y oF .x. A ) Fn I ) |
119 |
118
|
adantrr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y oF .x. A ) Fn I ) |
120 |
53
|
ffnd |
|- ( ( ph /\ z e. B ) -> ( z oF .x. A ) Fn I ) |
121 |
120
|
adantrl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( z oF .x. A ) Fn I ) |
122 |
119 121 79 79 52
|
offn |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) Fn I ) |
123 |
8
|
fveq2d |
|- ( ph -> ( +g ` R ) = ( +g ` ( Scalar ` T ) ) ) |
124 |
123
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( +g ` R ) = ( +g ` ( Scalar ` T ) ) ) |
125 |
124
|
oveqd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( y ` x ) ( +g ` R ) ( z ` x ) ) = ( ( y ` x ) ( +g ` ( Scalar ` T ) ) ( z ` x ) ) ) |
126 |
125
|
oveq1d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ` x ) ( +g ` R ) ( z ` x ) ) .x. ( A ` x ) ) = ( ( ( y ` x ) ( +g ` ( Scalar ` T ) ) ( z ` x ) ) .x. ( A ` x ) ) ) |
127 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> T e. LMod ) |
128 |
110
|
ffvelrnda |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( y ` x ) e. ( Base ` R ) ) |
129 |
41
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( Base ` R ) = ( Base ` ( Scalar ` T ) ) ) |
130 |
128 129
|
eleqtrd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( y ` x ) e. ( Base ` ( Scalar ` T ) ) ) |
131 |
112
|
ffvelrnda |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( z ` x ) e. ( Base ` R ) ) |
132 |
131 129
|
eleqtrd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( z ` x ) e. ( Base ` ( Scalar ` T ) ) ) |
133 |
9
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> A : I --> C ) |
134 |
133
|
ffvelrnda |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( A ` x ) e. C ) |
135 |
|
eqid |
|- ( +g ` ( Scalar ` T ) ) = ( +g ` ( Scalar ` T ) ) |
136 |
3 23 12 4 45 135
|
lmodvsdir |
|- ( ( T e. LMod /\ ( ( y ` x ) e. ( Base ` ( Scalar ` T ) ) /\ ( z ` x ) e. ( Base ` ( Scalar ` T ) ) /\ ( A ` x ) e. C ) ) -> ( ( ( y ` x ) ( +g ` ( Scalar ` T ) ) ( z ` x ) ) .x. ( A ` x ) ) = ( ( ( y ` x ) .x. ( A ` x ) ) ( +g ` T ) ( ( z ` x ) .x. ( A ` x ) ) ) ) |
137 |
127 130 132 134 136
|
syl13anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ` x ) ( +g ` ( Scalar ` T ) ) ( z ` x ) ) .x. ( A ` x ) ) = ( ( ( y ` x ) .x. ( A ` x ) ) ( +g ` T ) ( ( z ` x ) .x. ( A ` x ) ) ) ) |
138 |
126 137
|
eqtrd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ` x ) ( +g ` R ) ( z ` x ) ) .x. ( A ` x ) ) = ( ( ( y ` x ) .x. ( A ` x ) ) ( +g ` T ) ( ( z ` x ) .x. ( A ` x ) ) ) ) |
139 |
111
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> y Fn I ) |
140 |
113
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> z Fn I ) |
141 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> I e. X ) |
142 |
|
simpr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> x e. I ) |
143 |
|
fnfvof |
|- ( ( ( y Fn I /\ z Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( y oF ( +g ` R ) z ) ` x ) = ( ( y ` x ) ( +g ` R ) ( z ` x ) ) ) |
144 |
139 140 141 142 143
|
syl22anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( y oF ( +g ` R ) z ) ` x ) = ( ( y ` x ) ( +g ` R ) ( z ` x ) ) ) |
145 |
144
|
oveq1d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y oF ( +g ` R ) z ) ` x ) .x. ( A ` x ) ) = ( ( ( y ` x ) ( +g ` R ) ( z ` x ) ) .x. ( A ` x ) ) ) |
146 |
115
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> A Fn I ) |
147 |
|
fnfvof |
|- ( ( ( y Fn I /\ A Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( y oF .x. A ) ` x ) = ( ( y ` x ) .x. ( A ` x ) ) ) |
148 |
139 146 141 142 147
|
syl22anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( y oF .x. A ) ` x ) = ( ( y ` x ) .x. ( A ` x ) ) ) |
149 |
|
fnfvof |
|- ( ( ( z Fn I /\ A Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( z oF .x. A ) ` x ) = ( ( z ` x ) .x. ( A ` x ) ) ) |
150 |
140 146 141 142 149
|
syl22anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( z oF .x. A ) ` x ) = ( ( z ` x ) .x. ( A ` x ) ) ) |
151 |
148 150
|
oveq12d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y oF .x. A ) ` x ) ( +g ` T ) ( ( z oF .x. A ) ` x ) ) = ( ( ( y ` x ) .x. ( A ` x ) ) ( +g ` T ) ( ( z ` x ) .x. ( A ` x ) ) ) ) |
152 |
138 145 151
|
3eqtr4d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y oF ( +g ` R ) z ) ` x ) .x. ( A ` x ) ) = ( ( ( y oF .x. A ) ` x ) ( +g ` T ) ( ( z oF .x. A ) ` x ) ) ) |
153 |
114
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( y oF ( +g ` R ) z ) Fn I ) |
154 |
|
fnfvof |
|- ( ( ( ( y oF ( +g ` R ) z ) Fn I /\ A Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( ( y oF ( +g ` R ) z ) oF .x. A ) ` x ) = ( ( ( y oF ( +g ` R ) z ) ` x ) .x. ( A ` x ) ) ) |
155 |
153 146 141 142 154
|
syl22anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y oF ( +g ` R ) z ) oF .x. A ) ` x ) = ( ( ( y oF ( +g ` R ) z ) ` x ) .x. ( A ` x ) ) ) |
156 |
119
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( y oF .x. A ) Fn I ) |
157 |
121
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( z oF .x. A ) Fn I ) |
158 |
|
fnfvof |
|- ( ( ( ( y oF .x. A ) Fn I /\ ( z oF .x. A ) Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ` x ) = ( ( ( y oF .x. A ) ` x ) ( +g ` T ) ( ( z oF .x. A ) ` x ) ) ) |
159 |
156 157 141 142 158
|
syl22anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ` x ) = ( ( ( y oF .x. A ) ` x ) ( +g ` T ) ( ( z oF .x. A ) ` x ) ) ) |
160 |
152 155 159
|
3eqtr4d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ x e. I ) -> ( ( ( y oF ( +g ` R ) z ) oF .x. A ) ` x ) = ( ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ` x ) ) |
161 |
117 122 160
|
eqfnfvd |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y oF ( +g ` R ) z ) oF .x. A ) = ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ) |
162 |
107 161
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( +g ` F ) z ) oF .x. A ) = ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ) |
163 |
162
|
oveq2d |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( T gsum ( ( y ( +g ` F ) z ) oF .x. A ) ) = ( T gsum ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ) ) |
164 |
101 163
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( E ` ( y ( +g ` F ) z ) ) = ( T gsum ( ( y oF .x. A ) oF ( +g ` T ) ( z oF .x. A ) ) ) ) |
165 |
|
oveq1 |
|- ( x = y -> ( x oF .x. A ) = ( y oF .x. A ) ) |
166 |
165
|
oveq2d |
|- ( x = y -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( y oF .x. A ) ) ) |
167 |
|
ovex |
|- ( T gsum ( y oF .x. A ) ) e. _V |
168 |
166 5 167
|
fvmpt |
|- ( y e. B -> ( E ` y ) = ( T gsum ( y oF .x. A ) ) ) |
169 |
168
|
ad2antrl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( E ` y ) = ( T gsum ( y oF .x. A ) ) ) |
170 |
|
oveq1 |
|- ( x = z -> ( x oF .x. A ) = ( z oF .x. A ) ) |
171 |
170
|
oveq2d |
|- ( x = z -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( z oF .x. A ) ) ) |
172 |
|
ovex |
|- ( T gsum ( z oF .x. A ) ) e. _V |
173 |
171 5 172
|
fvmpt |
|- ( z e. B -> ( E ` z ) = ( T gsum ( z oF .x. A ) ) ) |
174 |
173
|
ad2antll |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( E ` z ) = ( T gsum ( z oF .x. A ) ) ) |
175 |
169 174
|
oveq12d |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( E ` y ) ( +g ` T ) ( E ` z ) ) = ( ( T gsum ( y oF .x. A ) ) ( +g ` T ) ( T gsum ( z oF .x. A ) ) ) ) |
176 |
93 164 175
|
3eqtr4d |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( E ` ( y ( +g ` F ) z ) ) = ( ( E ` y ) ( +g ` T ) ( E ` z ) ) ) |
177 |
2 3 22 23 25 27 77 176
|
isghmd |
|- ( ph -> E e. ( F GrpHom T ) ) |
178 |
6
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> T e. LMod ) |
179 |
7
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> I e. X ) |
180 |
21
|
fveq2d |
|- ( ph -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` F ) ) ) |
181 |
180
|
eleq2d |
|- ( ph -> ( y e. ( Base ` ( Scalar ` T ) ) <-> y e. ( Base ` ( Scalar ` F ) ) ) ) |
182 |
181
|
biimpar |
|- ( ( ph /\ y e. ( Base ` ( Scalar ` F ) ) ) -> y e. ( Base ` ( Scalar ` T ) ) ) |
183 |
182
|
adantrr |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> y e. ( Base ` ( Scalar ` T ) ) ) |
184 |
53
|
adantrl |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( z oF .x. A ) : I --> C ) |
185 |
184
|
ffvelrnda |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( z oF .x. A ) ` x ) e. C ) |
186 |
53
|
feqmptd |
|- ( ( ph /\ z e. B ) -> ( z oF .x. A ) = ( x e. I |-> ( ( z oF .x. A ) ` x ) ) ) |
187 |
186 74
|
eqbrtrrd |
|- ( ( ph /\ z e. B ) -> ( x e. I |-> ( ( z oF .x. A ) ` x ) ) finSupp ( 0g ` T ) ) |
188 |
187
|
adantrl |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( x e. I |-> ( ( z oF .x. A ) ` x ) ) finSupp ( 0g ` T ) ) |
189 |
3 12 45 34 23 4 178 179 183 185 188
|
gsumvsmul |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( T gsum ( x e. I |-> ( y .x. ( ( z oF .x. A ) ` x ) ) ) ) = ( y .x. ( T gsum ( x e. I |-> ( ( z oF .x. A ) ` x ) ) ) ) ) |
190 |
18
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> F e. LMod ) |
191 |
|
simprl |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> y e. ( Base ` ( Scalar ` F ) ) ) |
192 |
|
simprr |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> z e. B ) |
193 |
2 11 10 13
|
lmodvscl |
|- ( ( F e. LMod /\ y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) -> ( y ( .s ` F ) z ) e. B ) |
194 |
190 191 192 193
|
syl3anc |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( y ( .s ` F ) z ) e. B ) |
195 |
1 48 2
|
frlmbasf |
|- ( ( I e. X /\ ( y ( .s ` F ) z ) e. B ) -> ( y ( .s ` F ) z ) : I --> ( Base ` R ) ) |
196 |
179 194 195
|
syl2anc |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( y ( .s ` F ) z ) : I --> ( Base ` R ) ) |
197 |
196
|
ffnd |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( y ( .s ` F ) z ) Fn I ) |
198 |
115
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> A Fn I ) |
199 |
197 198 179 179 52
|
offn |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( ( y ( .s ` F ) z ) oF .x. A ) Fn I ) |
200 |
|
dffn2 |
|- ( ( ( y ( .s ` F ) z ) oF .x. A ) Fn I <-> ( ( y ( .s ` F ) z ) oF .x. A ) : I --> _V ) |
201 |
199 200
|
sylib |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( ( y ( .s ` F ) z ) oF .x. A ) : I --> _V ) |
202 |
201
|
feqmptd |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( ( y ( .s ` F ) z ) oF .x. A ) = ( x e. I |-> ( ( ( y ( .s ` F ) z ) oF .x. A ) ` x ) ) ) |
203 |
8
|
fveq2d |
|- ( ph -> ( .r ` R ) = ( .r ` ( Scalar ` T ) ) ) |
204 |
203
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( .r ` R ) = ( .r ` ( Scalar ` T ) ) ) |
205 |
204
|
oveqd |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( y ( .r ` R ) ( z ` x ) ) = ( y ( .r ` ( Scalar ` T ) ) ( z ` x ) ) ) |
206 |
205
|
oveq1d |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( y ( .r ` R ) ( z ` x ) ) .x. ( A ` x ) ) = ( ( y ( .r ` ( Scalar ` T ) ) ( z ` x ) ) .x. ( A ` x ) ) ) |
207 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> T e. LMod ) |
208 |
|
simplrl |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> y e. ( Base ` ( Scalar ` F ) ) ) |
209 |
180
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` F ) ) ) |
210 |
208 209
|
eleqtrrd |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> y e. ( Base ` ( Scalar ` T ) ) ) |
211 |
50
|
ffvelrnda |
|- ( ( ( ph /\ z e. B ) /\ x e. I ) -> ( z ` x ) e. ( Base ` R ) ) |
212 |
41
|
ad2antrr |
|- ( ( ( ph /\ z e. B ) /\ x e. I ) -> ( Base ` R ) = ( Base ` ( Scalar ` T ) ) ) |
213 |
211 212
|
eleqtrd |
|- ( ( ( ph /\ z e. B ) /\ x e. I ) -> ( z ` x ) e. ( Base ` ( Scalar ` T ) ) ) |
214 |
213
|
adantlrl |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( z ` x ) e. ( Base ` ( Scalar ` T ) ) ) |
215 |
9
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( A ` x ) e. C ) |
216 |
215
|
adantlr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( A ` x ) e. C ) |
217 |
|
eqid |
|- ( .r ` ( Scalar ` T ) ) = ( .r ` ( Scalar ` T ) ) |
218 |
3 12 4 45 217
|
lmodvsass |
|- ( ( T e. LMod /\ ( y e. ( Base ` ( Scalar ` T ) ) /\ ( z ` x ) e. ( Base ` ( Scalar ` T ) ) /\ ( A ` x ) e. C ) ) -> ( ( y ( .r ` ( Scalar ` T ) ) ( z ` x ) ) .x. ( A ` x ) ) = ( y .x. ( ( z ` x ) .x. ( A ` x ) ) ) ) |
219 |
207 210 214 216 218
|
syl13anc |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( y ( .r ` ( Scalar ` T ) ) ( z ` x ) ) .x. ( A ` x ) ) = ( y .x. ( ( z ` x ) .x. ( A ` x ) ) ) ) |
220 |
206 219
|
eqtrd |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( y ( .r ` R ) ( z ` x ) ) .x. ( A ` x ) ) = ( y .x. ( ( z ` x ) .x. ( A ` x ) ) ) ) |
221 |
197
|
adantr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( y ( .s ` F ) z ) Fn I ) |
222 |
115
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> A Fn I ) |
223 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> I e. X ) |
224 |
|
simpr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> x e. I ) |
225 |
|
fnfvof |
|- ( ( ( ( y ( .s ` F ) z ) Fn I /\ A Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( ( y ( .s ` F ) z ) oF .x. A ) ` x ) = ( ( ( y ( .s ` F ) z ) ` x ) .x. ( A ` x ) ) ) |
226 |
221 222 223 224 225
|
syl22anc |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ( .s ` F ) z ) oF .x. A ) ` x ) = ( ( ( y ( .s ` F ) z ) ` x ) .x. ( A ` x ) ) ) |
227 |
20
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
228 |
227
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
229 |
208 228
|
eleqtrrd |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> y e. ( Base ` R ) ) |
230 |
|
simplrr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> z e. B ) |
231 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
232 |
1 2 48 223 229 230 224 10 231
|
frlmvscaval |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( y ( .s ` F ) z ) ` x ) = ( y ( .r ` R ) ( z ` x ) ) ) |
233 |
232
|
oveq1d |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ( .s ` F ) z ) ` x ) .x. ( A ` x ) ) = ( ( y ( .r ` R ) ( z ` x ) ) .x. ( A ` x ) ) ) |
234 |
226 233
|
eqtrd |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ( .s ` F ) z ) oF .x. A ) ` x ) = ( ( y ( .r ` R ) ( z ` x ) ) .x. ( A ` x ) ) ) |
235 |
50
|
ffnd |
|- ( ( ph /\ z e. B ) -> z Fn I ) |
236 |
235
|
adantrl |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> z Fn I ) |
237 |
236
|
adantr |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> z Fn I ) |
238 |
237 222 223 224 149
|
syl22anc |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( z oF .x. A ) ` x ) = ( ( z ` x ) .x. ( A ` x ) ) ) |
239 |
238
|
oveq2d |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( y .x. ( ( z oF .x. A ) ` x ) ) = ( y .x. ( ( z ` x ) .x. ( A ` x ) ) ) ) |
240 |
220 234 239
|
3eqtr4d |
|- ( ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) /\ x e. I ) -> ( ( ( y ( .s ` F ) z ) oF .x. A ) ` x ) = ( y .x. ( ( z oF .x. A ) ` x ) ) ) |
241 |
240
|
mpteq2dva |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( x e. I |-> ( ( ( y ( .s ` F ) z ) oF .x. A ) ` x ) ) = ( x e. I |-> ( y .x. ( ( z oF .x. A ) ` x ) ) ) ) |
242 |
202 241
|
eqtrd |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( ( y ( .s ` F ) z ) oF .x. A ) = ( x e. I |-> ( y .x. ( ( z oF .x. A ) ` x ) ) ) ) |
243 |
242
|
oveq2d |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( T gsum ( ( y ( .s ` F ) z ) oF .x. A ) ) = ( T gsum ( x e. I |-> ( y .x. ( ( z oF .x. A ) ` x ) ) ) ) ) |
244 |
184
|
feqmptd |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( z oF .x. A ) = ( x e. I |-> ( ( z oF .x. A ) ` x ) ) ) |
245 |
244
|
oveq2d |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( T gsum ( z oF .x. A ) ) = ( T gsum ( x e. I |-> ( ( z oF .x. A ) ` x ) ) ) ) |
246 |
245
|
oveq2d |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( y .x. ( T gsum ( z oF .x. A ) ) ) = ( y .x. ( T gsum ( x e. I |-> ( ( z oF .x. A ) ` x ) ) ) ) ) |
247 |
189 243 246
|
3eqtr4d |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( T gsum ( ( y ( .s ` F ) z ) oF .x. A ) ) = ( y .x. ( T gsum ( z oF .x. A ) ) ) ) |
248 |
|
oveq1 |
|- ( x = ( y ( .s ` F ) z ) -> ( x oF .x. A ) = ( ( y ( .s ` F ) z ) oF .x. A ) ) |
249 |
248
|
oveq2d |
|- ( x = ( y ( .s ` F ) z ) -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( ( y ( .s ` F ) z ) oF .x. A ) ) ) |
250 |
|
ovex |
|- ( T gsum ( ( y ( .s ` F ) z ) oF .x. A ) ) e. _V |
251 |
249 5 250
|
fvmpt |
|- ( ( y ( .s ` F ) z ) e. B -> ( E ` ( y ( .s ` F ) z ) ) = ( T gsum ( ( y ( .s ` F ) z ) oF .x. A ) ) ) |
252 |
194 251
|
syl |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( E ` ( y ( .s ` F ) z ) ) = ( T gsum ( ( y ( .s ` F ) z ) oF .x. A ) ) ) |
253 |
173
|
oveq2d |
|- ( z e. B -> ( y .x. ( E ` z ) ) = ( y .x. ( T gsum ( z oF .x. A ) ) ) ) |
254 |
253
|
ad2antll |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( y .x. ( E ` z ) ) = ( y .x. ( T gsum ( z oF .x. A ) ) ) ) |
255 |
247 252 254
|
3eqtr4d |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` F ) ) /\ z e. B ) ) -> ( E ` ( y ( .s ` F ) z ) ) = ( y .x. ( E ` z ) ) ) |
256 |
2 10 4 11 12 13 18 6 21 177 255
|
islmhmd |
|- ( ph -> E e. ( F LMHom T ) ) |