Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmup.b |
|- B = ( Base ` F ) |
3 |
|
frlmup.c |
|- C = ( Base ` T ) |
4 |
|
frlmup.v |
|- .x. = ( .s ` T ) |
5 |
|
frlmup.e |
|- E = ( x e. B |-> ( T gsum ( x oF .x. A ) ) ) |
6 |
|
frlmup.t |
|- ( ph -> T e. LMod ) |
7 |
|
frlmup.i |
|- ( ph -> I e. X ) |
8 |
|
frlmup.r |
|- ( ph -> R = ( Scalar ` T ) ) |
9 |
|
frlmup.a |
|- ( ph -> A : I --> C ) |
10 |
|
frlmup.y |
|- ( ph -> Y e. I ) |
11 |
|
frlmup.u |
|- U = ( R unitVec I ) |
12 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
13 |
12
|
lmodring |
|- ( T e. LMod -> ( Scalar ` T ) e. Ring ) |
14 |
6 13
|
syl |
|- ( ph -> ( Scalar ` T ) e. Ring ) |
15 |
8 14
|
eqeltrd |
|- ( ph -> R e. Ring ) |
16 |
11 1 2
|
uvcff |
|- ( ( R e. Ring /\ I e. X ) -> U : I --> B ) |
17 |
15 7 16
|
syl2anc |
|- ( ph -> U : I --> B ) |
18 |
17 10
|
ffvelrnd |
|- ( ph -> ( U ` Y ) e. B ) |
19 |
|
oveq1 |
|- ( x = ( U ` Y ) -> ( x oF .x. A ) = ( ( U ` Y ) oF .x. A ) ) |
20 |
19
|
oveq2d |
|- ( x = ( U ` Y ) -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( ( U ` Y ) oF .x. A ) ) ) |
21 |
|
ovex |
|- ( T gsum ( ( U ` Y ) oF .x. A ) ) e. _V |
22 |
20 5 21
|
fvmpt |
|- ( ( U ` Y ) e. B -> ( E ` ( U ` Y ) ) = ( T gsum ( ( U ` Y ) oF .x. A ) ) ) |
23 |
18 22
|
syl |
|- ( ph -> ( E ` ( U ` Y ) ) = ( T gsum ( ( U ` Y ) oF .x. A ) ) ) |
24 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
25 |
|
lmodcmn |
|- ( T e. LMod -> T e. CMnd ) |
26 |
|
cmnmnd |
|- ( T e. CMnd -> T e. Mnd ) |
27 |
6 25 26
|
3syl |
|- ( ph -> T e. Mnd ) |
28 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
30 |
1 29 2
|
frlmbasf |
|- ( ( I e. X /\ ( U ` Y ) e. B ) -> ( U ` Y ) : I --> ( Base ` R ) ) |
31 |
7 18 30
|
syl2anc |
|- ( ph -> ( U ` Y ) : I --> ( Base ` R ) ) |
32 |
8
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` T ) ) ) |
33 |
32
|
feq3d |
|- ( ph -> ( ( U ` Y ) : I --> ( Base ` R ) <-> ( U ` Y ) : I --> ( Base ` ( Scalar ` T ) ) ) ) |
34 |
31 33
|
mpbid |
|- ( ph -> ( U ` Y ) : I --> ( Base ` ( Scalar ` T ) ) ) |
35 |
12 28 4 3 6 34 9 7
|
lcomf |
|- ( ph -> ( ( U ` Y ) oF .x. A ) : I --> C ) |
36 |
31
|
ffnd |
|- ( ph -> ( U ` Y ) Fn I ) |
37 |
36
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( U ` Y ) Fn I ) |
38 |
9
|
ffnd |
|- ( ph -> A Fn I ) |
39 |
38
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> A Fn I ) |
40 |
7
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> I e. X ) |
41 |
|
eldifi |
|- ( x e. ( I \ { Y } ) -> x e. I ) |
42 |
41
|
adantl |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> x e. I ) |
43 |
|
fnfvof |
|- ( ( ( ( U ` Y ) Fn I /\ A Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( ( U ` Y ) oF .x. A ) ` x ) = ( ( ( U ` Y ) ` x ) .x. ( A ` x ) ) ) |
44 |
37 39 40 42 43
|
syl22anc |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( ( U ` Y ) oF .x. A ) ` x ) = ( ( ( U ` Y ) ` x ) .x. ( A ` x ) ) ) |
45 |
15
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> R e. Ring ) |
46 |
10
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> Y e. I ) |
47 |
|
eldifsni |
|- ( x e. ( I \ { Y } ) -> x =/= Y ) |
48 |
47
|
necomd |
|- ( x e. ( I \ { Y } ) -> Y =/= x ) |
49 |
48
|
adantl |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> Y =/= x ) |
50 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
51 |
11 45 40 46 42 49 50
|
uvcvv0 |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( U ` Y ) ` x ) = ( 0g ` R ) ) |
52 |
8
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` T ) ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` T ) ) ) |
54 |
51 53
|
eqtrd |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( U ` Y ) ` x ) = ( 0g ` ( Scalar ` T ) ) ) |
55 |
54
|
oveq1d |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( ( U ` Y ) ` x ) .x. ( A ` x ) ) = ( ( 0g ` ( Scalar ` T ) ) .x. ( A ` x ) ) ) |
56 |
6
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> T e. LMod ) |
57 |
|
ffvelrn |
|- ( ( A : I --> C /\ x e. I ) -> ( A ` x ) e. C ) |
58 |
9 41 57
|
syl2an |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( A ` x ) e. C ) |
59 |
|
eqid |
|- ( 0g ` ( Scalar ` T ) ) = ( 0g ` ( Scalar ` T ) ) |
60 |
3 12 4 59 24
|
lmod0vs |
|- ( ( T e. LMod /\ ( A ` x ) e. C ) -> ( ( 0g ` ( Scalar ` T ) ) .x. ( A ` x ) ) = ( 0g ` T ) ) |
61 |
56 58 60
|
syl2anc |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( 0g ` ( Scalar ` T ) ) .x. ( A ` x ) ) = ( 0g ` T ) ) |
62 |
44 55 61
|
3eqtrd |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( ( U ` Y ) oF .x. A ) ` x ) = ( 0g ` T ) ) |
63 |
35 62
|
suppss |
|- ( ph -> ( ( ( U ` Y ) oF .x. A ) supp ( 0g ` T ) ) C_ { Y } ) |
64 |
3 24 27 7 10 35 63
|
gsumpt |
|- ( ph -> ( T gsum ( ( U ` Y ) oF .x. A ) ) = ( ( ( U ` Y ) oF .x. A ) ` Y ) ) |
65 |
|
fnfvof |
|- ( ( ( ( U ` Y ) Fn I /\ A Fn I ) /\ ( I e. X /\ Y e. I ) ) -> ( ( ( U ` Y ) oF .x. A ) ` Y ) = ( ( ( U ` Y ) ` Y ) .x. ( A ` Y ) ) ) |
66 |
36 38 7 10 65
|
syl22anc |
|- ( ph -> ( ( ( U ` Y ) oF .x. A ) ` Y ) = ( ( ( U ` Y ) ` Y ) .x. ( A ` Y ) ) ) |
67 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
68 |
11 15 7 10 67
|
uvcvv1 |
|- ( ph -> ( ( U ` Y ) ` Y ) = ( 1r ` R ) ) |
69 |
8
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` T ) ) ) |
70 |
68 69
|
eqtrd |
|- ( ph -> ( ( U ` Y ) ` Y ) = ( 1r ` ( Scalar ` T ) ) ) |
71 |
70
|
oveq1d |
|- ( ph -> ( ( ( U ` Y ) ` Y ) .x. ( A ` Y ) ) = ( ( 1r ` ( Scalar ` T ) ) .x. ( A ` Y ) ) ) |
72 |
9 10
|
ffvelrnd |
|- ( ph -> ( A ` Y ) e. C ) |
73 |
|
eqid |
|- ( 1r ` ( Scalar ` T ) ) = ( 1r ` ( Scalar ` T ) ) |
74 |
3 12 4 73
|
lmodvs1 |
|- ( ( T e. LMod /\ ( A ` Y ) e. C ) -> ( ( 1r ` ( Scalar ` T ) ) .x. ( A ` Y ) ) = ( A ` Y ) ) |
75 |
6 72 74
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` T ) ) .x. ( A ` Y ) ) = ( A ` Y ) ) |
76 |
66 71 75
|
3eqtrd |
|- ( ph -> ( ( ( U ` Y ) oF .x. A ) ` Y ) = ( A ` Y ) ) |
77 |
23 64 76
|
3eqtrd |
|- ( ph -> ( E ` ( U ` Y ) ) = ( A ` Y ) ) |