| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmup.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmup.b |
|- B = ( Base ` F ) |
| 3 |
|
frlmup.c |
|- C = ( Base ` T ) |
| 4 |
|
frlmup.v |
|- .x. = ( .s ` T ) |
| 5 |
|
frlmup.e |
|- E = ( x e. B |-> ( T gsum ( x oF .x. A ) ) ) |
| 6 |
|
frlmup.t |
|- ( ph -> T e. LMod ) |
| 7 |
|
frlmup.i |
|- ( ph -> I e. X ) |
| 8 |
|
frlmup.r |
|- ( ph -> R = ( Scalar ` T ) ) |
| 9 |
|
frlmup.a |
|- ( ph -> A : I --> C ) |
| 10 |
|
frlmup.k |
|- K = ( LSpan ` T ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
frlmup1 |
|- ( ph -> E e. ( F LMHom T ) ) |
| 12 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
| 13 |
12
|
lmodring |
|- ( T e. LMod -> ( Scalar ` T ) e. Ring ) |
| 14 |
6 13
|
syl |
|- ( ph -> ( Scalar ` T ) e. Ring ) |
| 15 |
8 14
|
eqeltrd |
|- ( ph -> R e. Ring ) |
| 16 |
|
eqid |
|- ( R unitVec I ) = ( R unitVec I ) |
| 17 |
16 1 2
|
uvcff |
|- ( ( R e. Ring /\ I e. X ) -> ( R unitVec I ) : I --> B ) |
| 18 |
15 7 17
|
syl2anc |
|- ( ph -> ( R unitVec I ) : I --> B ) |
| 19 |
18
|
frnd |
|- ( ph -> ran ( R unitVec I ) C_ B ) |
| 20 |
|
eqid |
|- ( LSpan ` F ) = ( LSpan ` F ) |
| 21 |
2 20 10
|
lmhmlsp |
|- ( ( E e. ( F LMHom T ) /\ ran ( R unitVec I ) C_ B ) -> ( E " ( ( LSpan ` F ) ` ran ( R unitVec I ) ) ) = ( K ` ( E " ran ( R unitVec I ) ) ) ) |
| 22 |
11 19 21
|
syl2anc |
|- ( ph -> ( E " ( ( LSpan ` F ) ` ran ( R unitVec I ) ) ) = ( K ` ( E " ran ( R unitVec I ) ) ) ) |
| 23 |
2 3
|
lmhmf |
|- ( E e. ( F LMHom T ) -> E : B --> C ) |
| 24 |
11 23
|
syl |
|- ( ph -> E : B --> C ) |
| 25 |
24
|
ffnd |
|- ( ph -> E Fn B ) |
| 26 |
|
fnima |
|- ( E Fn B -> ( E " B ) = ran E ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( E " B ) = ran E ) |
| 28 |
|
eqid |
|- ( LBasis ` F ) = ( LBasis ` F ) |
| 29 |
1 16 28
|
frlmlbs |
|- ( ( R e. Ring /\ I e. X ) -> ran ( R unitVec I ) e. ( LBasis ` F ) ) |
| 30 |
15 7 29
|
syl2anc |
|- ( ph -> ran ( R unitVec I ) e. ( LBasis ` F ) ) |
| 31 |
2 28 20
|
lbssp |
|- ( ran ( R unitVec I ) e. ( LBasis ` F ) -> ( ( LSpan ` F ) ` ran ( R unitVec I ) ) = B ) |
| 32 |
30 31
|
syl |
|- ( ph -> ( ( LSpan ` F ) ` ran ( R unitVec I ) ) = B ) |
| 33 |
32
|
eqcomd |
|- ( ph -> B = ( ( LSpan ` F ) ` ran ( R unitVec I ) ) ) |
| 34 |
33
|
imaeq2d |
|- ( ph -> ( E " B ) = ( E " ( ( LSpan ` F ) ` ran ( R unitVec I ) ) ) ) |
| 35 |
27 34
|
eqtr3d |
|- ( ph -> ran E = ( E " ( ( LSpan ` F ) ` ran ( R unitVec I ) ) ) ) |
| 36 |
|
imaco |
|- ( ( E o. ( R unitVec I ) ) " I ) = ( E " ( ( R unitVec I ) " I ) ) |
| 37 |
9
|
ffnd |
|- ( ph -> A Fn I ) |
| 38 |
18
|
ffnd |
|- ( ph -> ( R unitVec I ) Fn I ) |
| 39 |
|
fnco |
|- ( ( E Fn B /\ ( R unitVec I ) Fn I /\ ran ( R unitVec I ) C_ B ) -> ( E o. ( R unitVec I ) ) Fn I ) |
| 40 |
25 38 19 39
|
syl3anc |
|- ( ph -> ( E o. ( R unitVec I ) ) Fn I ) |
| 41 |
|
fvco2 |
|- ( ( ( R unitVec I ) Fn I /\ u e. I ) -> ( ( E o. ( R unitVec I ) ) ` u ) = ( E ` ( ( R unitVec I ) ` u ) ) ) |
| 42 |
38 41
|
sylan |
|- ( ( ph /\ u e. I ) -> ( ( E o. ( R unitVec I ) ) ` u ) = ( E ` ( ( R unitVec I ) ` u ) ) ) |
| 43 |
6
|
adantr |
|- ( ( ph /\ u e. I ) -> T e. LMod ) |
| 44 |
7
|
adantr |
|- ( ( ph /\ u e. I ) -> I e. X ) |
| 45 |
8
|
adantr |
|- ( ( ph /\ u e. I ) -> R = ( Scalar ` T ) ) |
| 46 |
9
|
adantr |
|- ( ( ph /\ u e. I ) -> A : I --> C ) |
| 47 |
|
simpr |
|- ( ( ph /\ u e. I ) -> u e. I ) |
| 48 |
1 2 3 4 5 43 44 45 46 47 16
|
frlmup2 |
|- ( ( ph /\ u e. I ) -> ( E ` ( ( R unitVec I ) ` u ) ) = ( A ` u ) ) |
| 49 |
42 48
|
eqtr2d |
|- ( ( ph /\ u e. I ) -> ( A ` u ) = ( ( E o. ( R unitVec I ) ) ` u ) ) |
| 50 |
37 40 49
|
eqfnfvd |
|- ( ph -> A = ( E o. ( R unitVec I ) ) ) |
| 51 |
50
|
imaeq1d |
|- ( ph -> ( A " I ) = ( ( E o. ( R unitVec I ) ) " I ) ) |
| 52 |
|
fnima |
|- ( A Fn I -> ( A " I ) = ran A ) |
| 53 |
37 52
|
syl |
|- ( ph -> ( A " I ) = ran A ) |
| 54 |
51 53
|
eqtr3d |
|- ( ph -> ( ( E o. ( R unitVec I ) ) " I ) = ran A ) |
| 55 |
|
fnima |
|- ( ( R unitVec I ) Fn I -> ( ( R unitVec I ) " I ) = ran ( R unitVec I ) ) |
| 56 |
38 55
|
syl |
|- ( ph -> ( ( R unitVec I ) " I ) = ran ( R unitVec I ) ) |
| 57 |
56
|
imaeq2d |
|- ( ph -> ( E " ( ( R unitVec I ) " I ) ) = ( E " ran ( R unitVec I ) ) ) |
| 58 |
36 54 57
|
3eqtr3a |
|- ( ph -> ran A = ( E " ran ( R unitVec I ) ) ) |
| 59 |
58
|
fveq2d |
|- ( ph -> ( K ` ran A ) = ( K ` ( E " ran ( R unitVec I ) ) ) ) |
| 60 |
22 35 59
|
3eqtr4d |
|- ( ph -> ran E = ( K ` ran A ) ) |