Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup4.r |
|- R = ( Scalar ` T ) |
2 |
|
frlmup4.f |
|- F = ( R freeLMod I ) |
3 |
|
frlmup4.u |
|- U = ( R unitVec I ) |
4 |
|
frlmup4.c |
|- C = ( Base ` T ) |
5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
6 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
7 |
|
eqid |
|- ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) = ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) |
8 |
|
simp1 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> T e. LMod ) |
9 |
|
simp2 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> I e. X ) |
10 |
1
|
a1i |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> R = ( Scalar ` T ) ) |
11 |
|
simp3 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> A : I --> C ) |
12 |
2 5 4 6 7 8 9 10 11
|
frlmup1 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) e. ( F LMHom T ) ) |
13 |
|
ovex |
|- ( T gsum ( x oF ( .s ` T ) A ) ) e. _V |
14 |
13 7
|
fnmpti |
|- ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) Fn ( Base ` F ) |
15 |
1
|
lmodring |
|- ( T e. LMod -> R e. Ring ) |
16 |
15
|
3ad2ant1 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> R e. Ring ) |
17 |
3 2 5
|
uvcff |
|- ( ( R e. Ring /\ I e. X ) -> U : I --> ( Base ` F ) ) |
18 |
16 9 17
|
syl2anc |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> U : I --> ( Base ` F ) ) |
19 |
18
|
ffnd |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> U Fn I ) |
20 |
18
|
frnd |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ran U C_ ( Base ` F ) ) |
21 |
|
fnco |
|- ( ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) Fn ( Base ` F ) /\ U Fn I /\ ran U C_ ( Base ` F ) ) -> ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) Fn I ) |
22 |
14 19 20 21
|
mp3an2i |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) Fn I ) |
23 |
|
ffn |
|- ( A : I --> C -> A Fn I ) |
24 |
23
|
3ad2ant3 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> A Fn I ) |
25 |
18
|
adantr |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> U : I --> ( Base ` F ) ) |
26 |
25
|
ffnd |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> U Fn I ) |
27 |
|
simpr |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> y e. I ) |
28 |
|
fvco2 |
|- ( ( U Fn I /\ y e. I ) -> ( ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) ` y ) = ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) ` ( U ` y ) ) ) |
29 |
26 27 28
|
syl2anc |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> ( ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) ` y ) = ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) ` ( U ` y ) ) ) |
30 |
|
simpl1 |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> T e. LMod ) |
31 |
|
simpl2 |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> I e. X ) |
32 |
1
|
a1i |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> R = ( Scalar ` T ) ) |
33 |
|
simpl3 |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> A : I --> C ) |
34 |
2 5 4 6 7 30 31 32 33 27 3
|
frlmup2 |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) ` ( U ` y ) ) = ( A ` y ) ) |
35 |
29 34
|
eqtrd |
|- ( ( ( T e. LMod /\ I e. X /\ A : I --> C ) /\ y e. I ) -> ( ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) ` y ) = ( A ` y ) ) |
36 |
22 24 35
|
eqfnfvd |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) = A ) |
37 |
|
coeq1 |
|- ( m = ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) -> ( m o. U ) = ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) ) |
38 |
37
|
eqeq1d |
|- ( m = ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) -> ( ( m o. U ) = A <-> ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) = A ) ) |
39 |
38
|
rspcev |
|- ( ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) e. ( F LMHom T ) /\ ( ( x e. ( Base ` F ) |-> ( T gsum ( x oF ( .s ` T ) A ) ) ) o. U ) = A ) -> E. m e. ( F LMHom T ) ( m o. U ) = A ) |
40 |
12 36 39
|
syl2anc |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> E. m e. ( F LMHom T ) ( m o. U ) = A ) |
41 |
18
|
ffund |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> Fun U ) |
42 |
|
funcoeqres |
|- ( ( Fun U /\ ( m o. U ) = A ) -> ( m |` ran U ) = ( A o. `' U ) ) |
43 |
42
|
ex |
|- ( Fun U -> ( ( m o. U ) = A -> ( m |` ran U ) = ( A o. `' U ) ) ) |
44 |
43
|
ralrimivw |
|- ( Fun U -> A. m e. ( F LMHom T ) ( ( m o. U ) = A -> ( m |` ran U ) = ( A o. `' U ) ) ) |
45 |
41 44
|
syl |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> A. m e. ( F LMHom T ) ( ( m o. U ) = A -> ( m |` ran U ) = ( A o. `' U ) ) ) |
46 |
|
eqid |
|- ( LBasis ` F ) = ( LBasis ` F ) |
47 |
2 3 46
|
frlmlbs |
|- ( ( R e. Ring /\ I e. X ) -> ran U e. ( LBasis ` F ) ) |
48 |
16 9 47
|
syl2anc |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ran U e. ( LBasis ` F ) ) |
49 |
|
eqid |
|- ( LSpan ` F ) = ( LSpan ` F ) |
50 |
5 46 49
|
lbssp |
|- ( ran U e. ( LBasis ` F ) -> ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) ) |
51 |
48 50
|
syl |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) ) |
52 |
5 49
|
lspextmo |
|- ( ( ran U C_ ( Base ` F ) /\ ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) ) -> E* m e. ( F LMHom T ) ( m |` ran U ) = ( A o. `' U ) ) |
53 |
20 51 52
|
syl2anc |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> E* m e. ( F LMHom T ) ( m |` ran U ) = ( A o. `' U ) ) |
54 |
|
rmoim |
|- ( A. m e. ( F LMHom T ) ( ( m o. U ) = A -> ( m |` ran U ) = ( A o. `' U ) ) -> ( E* m e. ( F LMHom T ) ( m |` ran U ) = ( A o. `' U ) -> E* m e. ( F LMHom T ) ( m o. U ) = A ) ) |
55 |
45 53 54
|
sylc |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> E* m e. ( F LMHom T ) ( m o. U ) = A ) |
56 |
|
reu5 |
|- ( E! m e. ( F LMHom T ) ( m o. U ) = A <-> ( E. m e. ( F LMHom T ) ( m o. U ) = A /\ E* m e. ( F LMHom T ) ( m o. U ) = A ) ) |
57 |
40 55 56
|
sylanbrc |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> E! m e. ( F LMHom T ) ( m o. U ) = A ) |