| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmplusgvalb.f |  |-  F = ( R freeLMod I ) | 
						
							| 2 |  | frlmplusgvalb.b |  |-  B = ( Base ` F ) | 
						
							| 3 |  | frlmplusgvalb.i |  |-  ( ph -> I e. W ) | 
						
							| 4 |  | frlmplusgvalb.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | frlmplusgvalb.z |  |-  ( ph -> Z e. B ) | 
						
							| 6 |  | frlmplusgvalb.r |  |-  ( ph -> R e. Ring ) | 
						
							| 7 |  | frlmvscavalb.k |  |-  K = ( Base ` R ) | 
						
							| 8 |  | frlmvscavalb.a |  |-  ( ph -> A e. K ) | 
						
							| 9 |  | frlmvscavalb.v |  |-  .xb = ( .s ` F ) | 
						
							| 10 |  | frlmvscavalb.t |  |-  .x. = ( .r ` R ) | 
						
							| 11 |  | frlmvplusgscavalb.y |  |-  ( ph -> Y e. B ) | 
						
							| 12 |  | frlmvplusgscavalb.a |  |-  .+ = ( +g ` R ) | 
						
							| 13 |  | frlmvplusgscavalb.p |  |-  .+b = ( +g ` F ) | 
						
							| 14 |  | frlmvplusgscavalb.c |  |-  ( ph -> C e. K ) | 
						
							| 15 | 1 | frlmlmod |  |-  ( ( R e. Ring /\ I e. W ) -> F e. LMod ) | 
						
							| 16 | 6 3 15 | syl2anc |  |-  ( ph -> F e. LMod ) | 
						
							| 17 | 8 7 | eleqtrdi |  |-  ( ph -> A e. ( Base ` R ) ) | 
						
							| 18 | 1 | frlmsca |  |-  ( ( R e. Ring /\ I e. W ) -> R = ( Scalar ` F ) ) | 
						
							| 19 | 6 3 18 | syl2anc |  |-  ( ph -> R = ( Scalar ` F ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) | 
						
							| 21 | 17 20 | eleqtrd |  |-  ( ph -> A e. ( Base ` ( Scalar ` F ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Scalar ` F ) = ( Scalar ` F ) | 
						
							| 23 |  | eqid |  |-  ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) | 
						
							| 24 | 2 22 9 23 | lmodvscl |  |-  ( ( F e. LMod /\ A e. ( Base ` ( Scalar ` F ) ) /\ X e. B ) -> ( A .xb X ) e. B ) | 
						
							| 25 | 16 21 4 24 | syl3anc |  |-  ( ph -> ( A .xb X ) e. B ) | 
						
							| 26 | 14 7 | eleqtrdi |  |-  ( ph -> C e. ( Base ` R ) ) | 
						
							| 27 | 26 20 | eleqtrd |  |-  ( ph -> C e. ( Base ` ( Scalar ` F ) ) ) | 
						
							| 28 | 2 22 9 23 | lmodvscl |  |-  ( ( F e. LMod /\ C e. ( Base ` ( Scalar ` F ) ) /\ Y e. B ) -> ( C .xb Y ) e. B ) | 
						
							| 29 | 16 27 11 28 | syl3anc |  |-  ( ph -> ( C .xb Y ) e. B ) | 
						
							| 30 | 1 2 3 25 5 6 29 12 13 | frlmplusgvalb |  |-  ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) ) ) | 
						
							| 31 | 3 | adantr |  |-  ( ( ph /\ i e. I ) -> I e. W ) | 
						
							| 32 | 8 | adantr |  |-  ( ( ph /\ i e. I ) -> A e. K ) | 
						
							| 33 | 4 | adantr |  |-  ( ( ph /\ i e. I ) -> X e. B ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ i e. I ) -> i e. I ) | 
						
							| 35 | 1 2 7 31 32 33 34 9 10 | frlmvscaval |  |-  ( ( ph /\ i e. I ) -> ( ( A .xb X ) ` i ) = ( A .x. ( X ` i ) ) ) | 
						
							| 36 | 14 | adantr |  |-  ( ( ph /\ i e. I ) -> C e. K ) | 
						
							| 37 | 11 | adantr |  |-  ( ( ph /\ i e. I ) -> Y e. B ) | 
						
							| 38 | 1 2 7 31 36 37 34 9 10 | frlmvscaval |  |-  ( ( ph /\ i e. I ) -> ( ( C .xb Y ) ` i ) = ( C .x. ( Y ` i ) ) ) | 
						
							| 39 | 35 38 | oveq12d |  |-  ( ( ph /\ i e. I ) -> ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( ( ph /\ i e. I ) -> ( ( Z ` i ) = ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) <-> ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) | 
						
							| 41 | 40 | ralbidva |  |-  ( ph -> ( A. i e. I ( Z ` i ) = ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) <-> A. i e. I ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) | 
						
							| 42 | 30 41 | bitrd |  |-  ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) |