| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmvscaval.y |
|- Y = ( R freeLMod I ) |
| 2 |
|
frlmvscaval.b |
|- B = ( Base ` Y ) |
| 3 |
|
frlmvscaval.k |
|- K = ( Base ` R ) |
| 4 |
|
frlmvscaval.i |
|- ( ph -> I e. W ) |
| 5 |
|
frlmvscaval.a |
|- ( ph -> A e. K ) |
| 6 |
|
frlmvscaval.x |
|- ( ph -> X e. B ) |
| 7 |
|
frlmvscaval.j |
|- ( ph -> J e. I ) |
| 8 |
|
frlmvscaval.v |
|- .xb = ( .s ` Y ) |
| 9 |
|
frlmvscaval.t |
|- .x. = ( .r ` R ) |
| 10 |
1 2 3 4 5 6 8 9
|
frlmvscafval |
|- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |
| 11 |
10
|
fveq1d |
|- ( ph -> ( ( A .xb X ) ` J ) = ( ( ( I X. { A } ) oF .x. X ) ` J ) ) |
| 12 |
|
fnconstg |
|- ( A e. K -> ( I X. { A } ) Fn I ) |
| 13 |
5 12
|
syl |
|- ( ph -> ( I X. { A } ) Fn I ) |
| 14 |
1 3 2
|
frlmbasf |
|- ( ( I e. W /\ X e. B ) -> X : I --> K ) |
| 15 |
4 6 14
|
syl2anc |
|- ( ph -> X : I --> K ) |
| 16 |
15
|
ffnd |
|- ( ph -> X Fn I ) |
| 17 |
|
fnfvof |
|- ( ( ( ( I X. { A } ) Fn I /\ X Fn I ) /\ ( I e. W /\ J e. I ) ) -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( ( ( I X. { A } ) ` J ) .x. ( X ` J ) ) ) |
| 18 |
13 16 4 7 17
|
syl22anc |
|- ( ph -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( ( ( I X. { A } ) ` J ) .x. ( X ` J ) ) ) |
| 19 |
|
fvconst2g |
|- ( ( A e. K /\ J e. I ) -> ( ( I X. { A } ) ` J ) = A ) |
| 20 |
5 7 19
|
syl2anc |
|- ( ph -> ( ( I X. { A } ) ` J ) = A ) |
| 21 |
20
|
oveq1d |
|- ( ph -> ( ( ( I X. { A } ) ` J ) .x. ( X ` J ) ) = ( A .x. ( X ` J ) ) ) |
| 22 |
11 18 21
|
3eqtrd |
|- ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |