Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
|- M = ( freeMnd ` I ) |
2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
3 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
4 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
5 |
|
wrd0 |
|- (/) e. Word I |
6 |
1 2
|
frmdbas |
|- ( I e. _V -> ( Base ` M ) = Word I ) |
7 |
5 6
|
eleqtrrid |
|- ( I e. _V -> (/) e. ( Base ` M ) ) |
8 |
1 2 4
|
frmdadd |
|- ( ( (/) e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = ( (/) ++ x ) ) |
9 |
7 8
|
sylan |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = ( (/) ++ x ) ) |
10 |
1 2
|
frmdelbas |
|- ( x e. ( Base ` M ) -> x e. Word I ) |
11 |
10
|
adantl |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> x e. Word I ) |
12 |
|
ccatlid |
|- ( x e. Word I -> ( (/) ++ x ) = x ) |
13 |
11 12
|
syl |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( (/) ++ x ) = x ) |
14 |
9 13
|
eqtrd |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = x ) |
15 |
1 2 4
|
frmdadd |
|- ( ( x e. ( Base ` M ) /\ (/) e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
16 |
15
|
ancoms |
|- ( ( (/) e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
17 |
7 16
|
sylan |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
18 |
|
ccatrid |
|- ( x e. Word I -> ( x ++ (/) ) = x ) |
19 |
11 18
|
syl |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( x ++ (/) ) = x ) |
20 |
17 19
|
eqtrd |
|- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = x ) |
21 |
2 3 4 7 14 20
|
ismgmid2 |
|- ( I e. _V -> (/) = ( 0g ` M ) ) |
22 |
|
0g0 |
|- (/) = ( 0g ` (/) ) |
23 |
|
fvprc |
|- ( -. I e. _V -> ( freeMnd ` I ) = (/) ) |
24 |
1 23
|
eqtrid |
|- ( -. I e. _V -> M = (/) ) |
25 |
24
|
fveq2d |
|- ( -. I e. _V -> ( 0g ` M ) = ( 0g ` (/) ) ) |
26 |
22 25
|
eqtr4id |
|- ( -. I e. _V -> (/) = ( 0g ` M ) ) |
27 |
21 26
|
pm2.61i |
|- (/) = ( 0g ` M ) |