Step |
Hyp |
Ref |
Expression |
1 |
|
frmdbas.m |
|- M = ( freeMnd ` I ) |
2 |
|
frmdbas.b |
|- B = ( Base ` M ) |
3 |
|
eqidd |
|- ( I e. V -> Word I = Word I ) |
4 |
|
eqid |
|- ( ++ |` ( Word I X. Word I ) ) = ( ++ |` ( Word I X. Word I ) ) |
5 |
1 3 4
|
frmdval |
|- ( I e. V -> M = { <. ( Base ` ndx ) , Word I >. , <. ( +g ` ndx ) , ( ++ |` ( Word I X. Word I ) ) >. } ) |
6 |
5
|
fveq2d |
|- ( I e. V -> ( Base ` M ) = ( Base ` { <. ( Base ` ndx ) , Word I >. , <. ( +g ` ndx ) , ( ++ |` ( Word I X. Word I ) ) >. } ) ) |
7 |
|
wrdexg |
|- ( I e. V -> Word I e. _V ) |
8 |
|
eqid |
|- { <. ( Base ` ndx ) , Word I >. , <. ( +g ` ndx ) , ( ++ |` ( Word I X. Word I ) ) >. } = { <. ( Base ` ndx ) , Word I >. , <. ( +g ` ndx ) , ( ++ |` ( Word I X. Word I ) ) >. } |
9 |
8
|
grpbase |
|- ( Word I e. _V -> Word I = ( Base ` { <. ( Base ` ndx ) , Word I >. , <. ( +g ` ndx ) , ( ++ |` ( Word I X. Word I ) ) >. } ) ) |
10 |
7 9
|
syl |
|- ( I e. V -> Word I = ( Base ` { <. ( Base ` ndx ) , Word I >. , <. ( +g ` ndx ) , ( ++ |` ( Word I X. Word I ) ) >. } ) ) |
11 |
6 10
|
eqtr4d |
|- ( I e. V -> ( Base ` M ) = Word I ) |
12 |
2 11
|
eqtrid |
|- ( I e. V -> B = Word I ) |