Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
|- M = ( freeMnd ` I ) |
2 |
|
sswrd |
|- ( J C_ I -> Word J C_ Word I ) |
3 |
2
|
adantl |
|- ( ( I e. V /\ J C_ I ) -> Word J C_ Word I ) |
4 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
5 |
1 4
|
frmdbas |
|- ( I e. V -> ( Base ` M ) = Word I ) |
6 |
5
|
adantr |
|- ( ( I e. V /\ J C_ I ) -> ( Base ` M ) = Word I ) |
7 |
3 6
|
sseqtrrd |
|- ( ( I e. V /\ J C_ I ) -> Word J C_ ( Base ` M ) ) |
8 |
|
wrd0 |
|- (/) e. Word J |
9 |
8
|
a1i |
|- ( ( I e. V /\ J C_ I ) -> (/) e. Word J ) |
10 |
7
|
sselda |
|- ( ( ( I e. V /\ J C_ I ) /\ x e. Word J ) -> x e. ( Base ` M ) ) |
11 |
7
|
sselda |
|- ( ( ( I e. V /\ J C_ I ) /\ y e. Word J ) -> y e. ( Base ` M ) ) |
12 |
10 11
|
anim12dan |
|- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) |
13 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
14 |
1 4 13
|
frmdadd |
|- ( ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( x ++ y ) ) |
15 |
12 14
|
syl |
|- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x ( +g ` M ) y ) = ( x ++ y ) ) |
16 |
|
ccatcl |
|- ( ( x e. Word J /\ y e. Word J ) -> ( x ++ y ) e. Word J ) |
17 |
16
|
adantl |
|- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x ++ y ) e. Word J ) |
18 |
15 17
|
eqeltrd |
|- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x ( +g ` M ) y ) e. Word J ) |
19 |
18
|
ralrimivva |
|- ( ( I e. V /\ J C_ I ) -> A. x e. Word J A. y e. Word J ( x ( +g ` M ) y ) e. Word J ) |
20 |
1
|
frmdmnd |
|- ( I e. V -> M e. Mnd ) |
21 |
20
|
adantr |
|- ( ( I e. V /\ J C_ I ) -> M e. Mnd ) |
22 |
1
|
frmd0 |
|- (/) = ( 0g ` M ) |
23 |
4 22 13
|
issubm |
|- ( M e. Mnd -> ( Word J e. ( SubMnd ` M ) <-> ( Word J C_ ( Base ` M ) /\ (/) e. Word J /\ A. x e. Word J A. y e. Word J ( x ( +g ` M ) y ) e. Word J ) ) ) |
24 |
21 23
|
syl |
|- ( ( I e. V /\ J C_ I ) -> ( Word J e. ( SubMnd ` M ) <-> ( Word J C_ ( Base ` M ) /\ (/) e. Word J /\ A. x e. Word J A. y e. Word J ( x ( +g ` M ) y ) e. Word J ) ) ) |
25 |
7 9 19 24
|
mpbir3and |
|- ( ( I e. V /\ J C_ I ) -> Word J e. ( SubMnd ` M ) ) |