| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frss |  |-  ( B C_ A -> ( R Fr A -> R Fr B ) ) | 
						
							| 2 |  | sess2 |  |-  ( B C_ A -> ( R Se A -> R Se B ) ) | 
						
							| 3 | 1 2 | anim12d |  |-  ( B C_ A -> ( ( R Fr A /\ R Se A ) -> ( R Fr B /\ R Se B ) ) ) | 
						
							| 4 |  | n0 |  |-  ( B =/= (/) <-> E. b b e. B ) | 
						
							| 5 |  | predeq3 |  |-  ( y = b -> Pred ( R , B , y ) = Pred ( R , B , b ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( y = b -> ( Pred ( R , B , y ) = (/) <-> Pred ( R , B , b ) = (/) ) ) | 
						
							| 7 | 6 | rspcev |  |-  ( ( b e. B /\ Pred ( R , B , b ) = (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) | 
						
							| 8 | 7 | ex |  |-  ( b e. B -> ( Pred ( R , B , b ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( Pred ( R , B , b ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 10 |  | predres |  |-  Pred ( R , B , b ) = Pred ( ( R |` B ) , B , b ) | 
						
							| 11 |  | relres |  |-  Rel ( R |` B ) | 
						
							| 12 |  | ssttrcl |  |-  ( Rel ( R |` B ) -> ( R |` B ) C_ t++ ( R |` B ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( R |` B ) C_ t++ ( R |` B ) | 
						
							| 14 |  | predrelss |  |-  ( ( R |` B ) C_ t++ ( R |` B ) -> Pred ( ( R |` B ) , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  Pred ( ( R |` B ) , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) | 
						
							| 16 | 10 15 | eqsstri |  |-  Pred ( R , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) | 
						
							| 17 |  | ssn0 |  |-  ( ( Pred ( R , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) /\ Pred ( R , B , b ) =/= (/) ) -> Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) | 
						
							| 18 | 16 17 | mpan |  |-  ( Pred ( R , B , b ) =/= (/) -> Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) | 
						
							| 19 |  | predss |  |-  Pred ( t++ ( R |` B ) , B , b ) C_ B | 
						
							| 20 | 18 19 | jctil |  |-  ( Pred ( R , B , b ) =/= (/) -> ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) ) | 
						
							| 21 |  | dffr4 |  |-  ( R Fr B <-> A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) | 
						
							| 22 | 21 | biimpi |  |-  ( R Fr B -> A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) | 
						
							| 23 |  | ttrclse |  |-  ( R Se B -> t++ ( R |` B ) Se B ) | 
						
							| 24 |  | setlikespec |  |-  ( ( b e. B /\ t++ ( R |` B ) Se B ) -> Pred ( t++ ( R |` B ) , B , b ) e. _V ) | 
						
							| 25 | 23 24 | sylan2 |  |-  ( ( b e. B /\ R Se B ) -> Pred ( t++ ( R |` B ) , B , b ) e. _V ) | 
						
							| 26 | 25 | ancoms |  |-  ( ( R Se B /\ b e. B ) -> Pred ( t++ ( R |` B ) , B , b ) e. _V ) | 
						
							| 27 |  | sseq1 |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( c C_ B <-> Pred ( t++ ( R |` B ) , B , b ) C_ B ) ) | 
						
							| 28 |  | neeq1 |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( c =/= (/) <-> Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) ) | 
						
							| 29 | 27 28 | anbi12d |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( ( c C_ B /\ c =/= (/) ) <-> ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) ) ) | 
						
							| 30 |  | predeq2 |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> Pred ( R , c , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) | 
						
							| 31 | 30 | eqeq1d |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( Pred ( R , c , y ) = (/) <-> Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 32 | 31 | rexeqbi1dv |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( E. y e. c Pred ( R , c , y ) = (/) <-> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 33 | 29 32 | imbi12d |  |-  ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) <-> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) ) | 
						
							| 34 | 33 | spcgv |  |-  ( Pred ( t++ ( R |` B ) , B , b ) e. _V -> ( A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) ) | 
						
							| 35 | 34 | impcom |  |-  ( ( A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) /\ Pred ( t++ ( R |` B ) , B , b ) e. _V ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 36 | 22 26 35 | syl2an |  |-  ( ( R Fr B /\ ( R Se B /\ b e. B ) ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 37 | 36 | anassrs |  |-  ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 38 |  | predres |  |-  Pred ( R , B , y ) = Pred ( ( R |` B ) , B , y ) | 
						
							| 39 |  | predrelss |  |-  ( ( R |` B ) C_ t++ ( R |` B ) -> Pred ( ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , y ) ) | 
						
							| 40 | 13 39 | ax-mp |  |-  Pred ( ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , y ) | 
						
							| 41 | 38 40 | eqsstri |  |-  Pred ( R , B , y ) C_ Pred ( t++ ( R |` B ) , B , y ) | 
						
							| 42 |  | inss1 |  |-  ( t++ ( R |` B ) i^i ( B X. B ) ) C_ t++ ( R |` B ) | 
						
							| 43 |  | coss1 |  |-  ( ( t++ ( R |` B ) i^i ( B X. B ) ) C_ t++ ( R |` B ) -> ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) ) | 
						
							| 44 | 42 43 | ax-mp |  |-  ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) | 
						
							| 45 |  | coss2 |  |-  ( ( t++ ( R |` B ) i^i ( B X. B ) ) C_ t++ ( R |` B ) -> ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. t++ ( R |` B ) ) ) | 
						
							| 46 | 42 45 | ax-mp |  |-  ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. t++ ( R |` B ) ) | 
						
							| 47 | 44 46 | sstri |  |-  ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. t++ ( R |` B ) ) | 
						
							| 48 |  | ttrcltr |  |-  ( t++ ( R |` B ) o. t++ ( R |` B ) ) C_ t++ ( R |` B ) | 
						
							| 49 | 47 48 | sstri |  |-  ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ t++ ( R |` B ) | 
						
							| 50 |  | predtrss |  |-  ( ( ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ t++ ( R |` B ) /\ y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( t++ ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) | 
						
							| 51 | 49 50 | mp3an1 |  |-  ( ( y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( t++ ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) | 
						
							| 52 | 41 51 | sstrid |  |-  ( ( y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( R , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) | 
						
							| 53 |  | sspred |  |-  ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( R , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) -> Pred ( R , B , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) | 
						
							| 54 | 19 52 53 | sylancr |  |-  ( ( y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( R , B , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) | 
						
							| 55 | 54 | ancoms |  |-  ( ( b e. B /\ y e. Pred ( t++ ( R |` B ) , B , b ) ) -> Pred ( R , B , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) | 
						
							| 56 | 55 | eqeq1d |  |-  ( ( b e. B /\ y e. Pred ( t++ ( R |` B ) , B , b ) ) -> ( Pred ( R , B , y ) = (/) <-> Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 57 | 56 | rexbidva |  |-  ( b e. B -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , B , y ) = (/) <-> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) | 
						
							| 58 |  | ssrexv |  |-  ( Pred ( t++ ( R |` B ) , B , b ) C_ B -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , B , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 59 | 19 58 | ax-mp |  |-  ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , B , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) | 
						
							| 60 | 57 59 | biimtrrdi |  |-  ( b e. B -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 62 | 37 61 | syld |  |-  ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 63 | 20 62 | syl5 |  |-  ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( Pred ( R , B , b ) =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 64 | 9 63 | pm2.61dne |  |-  ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> E. y e. B Pred ( R , B , y ) = (/) ) | 
						
							| 65 | 64 | ex |  |-  ( ( R Fr B /\ R Se B ) -> ( b e. B -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 66 | 65 | exlimdv |  |-  ( ( R Fr B /\ R Se B ) -> ( E. b b e. B -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 67 | 4 66 | biimtrid |  |-  ( ( R Fr B /\ R Se B ) -> ( B =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) | 
						
							| 68 | 3 67 | syl6com |  |-  ( ( R Fr A /\ R Se A ) -> ( B C_ A -> ( B =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) ) | 
						
							| 69 | 68 | imp32 |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |