Step |
Hyp |
Ref |
Expression |
1 |
|
frss |
|- ( B C_ A -> ( R Fr A -> R Fr B ) ) |
2 |
|
sess2 |
|- ( B C_ A -> ( R Se A -> R Se B ) ) |
3 |
1 2
|
anim12d |
|- ( B C_ A -> ( ( R Fr A /\ R Se A ) -> ( R Fr B /\ R Se B ) ) ) |
4 |
|
n0 |
|- ( B =/= (/) <-> E. b b e. B ) |
5 |
|
predeq3 |
|- ( y = b -> Pred ( R , B , y ) = Pred ( R , B , b ) ) |
6 |
5
|
eqeq1d |
|- ( y = b -> ( Pred ( R , B , y ) = (/) <-> Pred ( R , B , b ) = (/) ) ) |
7 |
6
|
rspcev |
|- ( ( b e. B /\ Pred ( R , B , b ) = (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
8 |
7
|
ex |
|- ( b e. B -> ( Pred ( R , B , b ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
9 |
8
|
adantl |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( Pred ( R , B , b ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
10 |
|
predres |
|- Pred ( R , B , b ) = Pred ( ( R |` B ) , B , b ) |
11 |
|
relres |
|- Rel ( R |` B ) |
12 |
|
ssttrcl |
|- ( Rel ( R |` B ) -> ( R |` B ) C_ t++ ( R |` B ) ) |
13 |
11 12
|
ax-mp |
|- ( R |` B ) C_ t++ ( R |` B ) |
14 |
|
predrelss |
|- ( ( R |` B ) C_ t++ ( R |` B ) -> Pred ( ( R |` B ) , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) ) |
15 |
13 14
|
ax-mp |
|- Pred ( ( R |` B ) , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) |
16 |
10 15
|
eqsstri |
|- Pred ( R , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) |
17 |
|
ssn0 |
|- ( ( Pred ( R , B , b ) C_ Pred ( t++ ( R |` B ) , B , b ) /\ Pred ( R , B , b ) =/= (/) ) -> Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) |
18 |
16 17
|
mpan |
|- ( Pred ( R , B , b ) =/= (/) -> Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) |
19 |
|
predss |
|- Pred ( t++ ( R |` B ) , B , b ) C_ B |
20 |
18 19
|
jctil |
|- ( Pred ( R , B , b ) =/= (/) -> ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) ) |
21 |
|
dffr4 |
|- ( R Fr B <-> A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) |
22 |
21
|
biimpi |
|- ( R Fr B -> A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) |
23 |
|
ttrclse |
|- ( R Se B -> t++ ( R |` B ) Se B ) |
24 |
|
setlikespec |
|- ( ( b e. B /\ t++ ( R |` B ) Se B ) -> Pred ( t++ ( R |` B ) , B , b ) e. _V ) |
25 |
23 24
|
sylan2 |
|- ( ( b e. B /\ R Se B ) -> Pred ( t++ ( R |` B ) , B , b ) e. _V ) |
26 |
25
|
ancoms |
|- ( ( R Se B /\ b e. B ) -> Pred ( t++ ( R |` B ) , B , b ) e. _V ) |
27 |
|
sseq1 |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( c C_ B <-> Pred ( t++ ( R |` B ) , B , b ) C_ B ) ) |
28 |
|
neeq1 |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( c =/= (/) <-> Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) ) |
29 |
27 28
|
anbi12d |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( ( c C_ B /\ c =/= (/) ) <-> ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) ) ) |
30 |
|
predeq2 |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> Pred ( R , c , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) |
31 |
30
|
eqeq1d |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( Pred ( R , c , y ) = (/) <-> Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
32 |
31
|
rexeqbi1dv |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( E. y e. c Pred ( R , c , y ) = (/) <-> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
33 |
29 32
|
imbi12d |
|- ( c = Pred ( t++ ( R |` B ) , B , b ) -> ( ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) <-> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) ) |
34 |
33
|
spcgv |
|- ( Pred ( t++ ( R |` B ) , B , b ) e. _V -> ( A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) ) |
35 |
34
|
impcom |
|- ( ( A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) /\ Pred ( t++ ( R |` B ) , B , b ) e. _V ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
36 |
22 26 35
|
syl2an |
|- ( ( R Fr B /\ ( R Se B /\ b e. B ) ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
37 |
36
|
anassrs |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
38 |
|
predres |
|- Pred ( R , B , y ) = Pred ( ( R |` B ) , B , y ) |
39 |
|
predrelss |
|- ( ( R |` B ) C_ t++ ( R |` B ) -> Pred ( ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , y ) ) |
40 |
13 39
|
ax-mp |
|- Pred ( ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , y ) |
41 |
38 40
|
eqsstri |
|- Pred ( R , B , y ) C_ Pred ( t++ ( R |` B ) , B , y ) |
42 |
|
inss1 |
|- ( t++ ( R |` B ) i^i ( B X. B ) ) C_ t++ ( R |` B ) |
43 |
|
coss1 |
|- ( ( t++ ( R |` B ) i^i ( B X. B ) ) C_ t++ ( R |` B ) -> ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) ) |
44 |
42 43
|
ax-mp |
|- ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) |
45 |
|
coss2 |
|- ( ( t++ ( R |` B ) i^i ( B X. B ) ) C_ t++ ( R |` B ) -> ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. t++ ( R |` B ) ) ) |
46 |
42 45
|
ax-mp |
|- ( t++ ( R |` B ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. t++ ( R |` B ) ) |
47 |
44 46
|
sstri |
|- ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ ( t++ ( R |` B ) o. t++ ( R |` B ) ) |
48 |
|
ttrcltr |
|- ( t++ ( R |` B ) o. t++ ( R |` B ) ) C_ t++ ( R |` B ) |
49 |
47 48
|
sstri |
|- ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ t++ ( R |` B ) |
50 |
|
predtrss |
|- ( ( ( ( t++ ( R |` B ) i^i ( B X. B ) ) o. ( t++ ( R |` B ) i^i ( B X. B ) ) ) C_ t++ ( R |` B ) /\ y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( t++ ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) |
51 |
49 50
|
mp3an1 |
|- ( ( y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( t++ ( R |` B ) , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) |
52 |
41 51
|
sstrid |
|- ( ( y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( R , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) |
53 |
|
sspred |
|- ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( R , B , y ) C_ Pred ( t++ ( R |` B ) , B , b ) ) -> Pred ( R , B , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) |
54 |
19 52 53
|
sylancr |
|- ( ( y e. Pred ( t++ ( R |` B ) , B , b ) /\ b e. B ) -> Pred ( R , B , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) |
55 |
54
|
ancoms |
|- ( ( b e. B /\ y e. Pred ( t++ ( R |` B ) , B , b ) ) -> Pred ( R , B , y ) = Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) ) |
56 |
55
|
eqeq1d |
|- ( ( b e. B /\ y e. Pred ( t++ ( R |` B ) , B , b ) ) -> ( Pred ( R , B , y ) = (/) <-> Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
57 |
56
|
rexbidva |
|- ( b e. B -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , B , y ) = (/) <-> E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) ) ) |
58 |
|
ssrexv |
|- ( Pred ( t++ ( R |` B ) , B , b ) C_ B -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , B , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
59 |
19 58
|
ax-mp |
|- ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , B , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) |
60 |
57 59
|
syl6bir |
|- ( b e. B -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
61 |
60
|
adantl |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( E. y e. Pred ( t++ ( R |` B ) , B , b ) Pred ( R , Pred ( t++ ( R |` B ) , B , b ) , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
62 |
37 61
|
syld |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( ( Pred ( t++ ( R |` B ) , B , b ) C_ B /\ Pred ( t++ ( R |` B ) , B , b ) =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
63 |
20 62
|
syl5 |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( Pred ( R , B , b ) =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
64 |
9 63
|
pm2.61dne |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
65 |
64
|
ex |
|- ( ( R Fr B /\ R Se B ) -> ( b e. B -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
66 |
65
|
exlimdv |
|- ( ( R Fr B /\ R Se B ) -> ( E. b b e. B -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
67 |
4 66
|
syl5bi |
|- ( ( R Fr B /\ R Se B ) -> ( B =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
68 |
3 67
|
syl6com |
|- ( ( R Fr A /\ R Se A ) -> ( B C_ A -> ( B =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) ) |
69 |
68
|
imp32 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |