Metamath Proof Explorer


Theorem frmx

Description: The X sequence is a nonnegative integer. See rmxnn for a strengthening. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion frmx
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0

Proof

Step Hyp Ref Expression
1 rmxyelxp
 |-  ( ( a e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) e. ( NN0 X. ZZ ) )
2 xp1st
 |-  ( ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) e. ( NN0 X. ZZ ) -> ( 1st ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. NN0 )
3 1 2 syl
 |-  ( ( a e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( 1st ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. NN0 )
4 3 rgen2
 |-  A. a e. ( ZZ>= ` 2 ) A. b e. ZZ ( 1st ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. NN0
5 df-rmx
 |-  rmX = ( a e. ( ZZ>= ` 2 ) , b e. ZZ |-> ( 1st ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) )
6 5 fmpo
 |-  ( A. a e. ( ZZ>= ` 2 ) A. b e. ZZ ( 1st ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. NN0 <-> rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 )
7 4 6 mpbi
 |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0