Step |
Hyp |
Ref |
Expression |
1 |
|
rmxyelxp |
|- ( ( a e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) e. ( NN0 X. ZZ ) ) |
2 |
|
xp2nd |
|- ( ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) e. ( NN0 X. ZZ ) -> ( 2nd ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. ZZ ) |
3 |
1 2
|
syl |
|- ( ( a e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( 2nd ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. ZZ ) |
4 |
3
|
rgen2 |
|- A. a e. ( ZZ>= ` 2 ) A. b e. ZZ ( 2nd ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. ZZ |
5 |
|
df-rmy |
|- rmY = ( a e. ( ZZ>= ` 2 ) , b e. ZZ |-> ( 2nd ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) ) |
6 |
5
|
fmpo |
|- ( A. a e. ( ZZ>= ` 2 ) A. b e. ZZ ( 2nd ` ( `' ( c e. ( NN0 X. ZZ ) |-> ( ( 1st ` c ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ b ) ) ) e. ZZ <-> rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ ) |
7 |
4 6
|
mpbi |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |