Metamath Proof Explorer


Theorem frnsuppeq

Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Assertion frnsuppeq
|- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) )

Proof

Step Hyp Ref Expression
1 fex
 |-  ( ( F : I --> S /\ I e. V ) -> F e. _V )
2 1 expcom
 |-  ( I e. V -> ( F : I --> S -> F e. _V ) )
3 2 adantr
 |-  ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> F e. _V ) )
4 3 imp
 |-  ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> F e. _V )
5 simplr
 |-  ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> Z e. W )
6 suppimacnv
 |-  ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
7 4 5 6 syl2anc
 |-  ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
8 invdif
 |-  ( S i^i ( _V \ { Z } ) ) = ( S \ { Z } )
9 8 imaeq2i
 |-  ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( S \ { Z } ) )
10 ffun
 |-  ( F : I --> S -> Fun F )
11 inpreima
 |-  ( Fun F -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) )
12 10 11 syl
 |-  ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) )
13 cnvimass
 |-  ( `' F " ( _V \ { Z } ) ) C_ dom F
14 fdm
 |-  ( F : I --> S -> dom F = I )
15 fimacnv
 |-  ( F : I --> S -> ( `' F " S ) = I )
16 14 15 eqtr4d
 |-  ( F : I --> S -> dom F = ( `' F " S ) )
17 13 16 sseqtrid
 |-  ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) )
18 sseqin2
 |-  ( ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) <-> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) )
19 17 18 sylib
 |-  ( F : I --> S -> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) )
20 12 19 eqtrd
 |-  ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) )
21 9 20 syl5reqr
 |-  ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) )
22 21 adantl
 |-  ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) )
23 7 22 eqtrd
 |-  ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) )
24 23 ex
 |-  ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) )