Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frpoins3g.1 | |- ( x e. A -> ( A. y e. Pred ( R , A , x ) ps -> ph ) ) | |
| frpoins3g.2 | |- ( x = y -> ( ph <-> ps ) ) | ||
| frpoins3g.3 | |- ( x = B -> ( ph <-> ch ) ) | ||
| Assertion | frpoins3g | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ B e. A ) -> ch ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frpoins3g.1 | |- ( x e. A -> ( A. y e. Pred ( R , A , x ) ps -> ph ) ) | |
| 2 | frpoins3g.2 | |- ( x = y -> ( ph <-> ps ) ) | |
| 3 | frpoins3g.3 | |- ( x = B -> ( ph <-> ch ) ) | |
| 4 | 1 2 | frpoins2g | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. x e. A ph ) | 
| 5 | 3 | rspccva | |- ( ( A. x e. A ph /\ B e. A ) -> ch ) | 
| 6 | 4 5 | sylan | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ B e. A ) -> ch ) |