Step |
Hyp |
Ref |
Expression |
1 |
|
frr.1 |
|- F = frecs ( R , A , G ) |
2 |
|
eqid |
|- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } |
3 |
2
|
frrlem1 |
|- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
4 |
3 1
|
frrlem15 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( g e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } /\ h e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
5 |
3 1 4
|
frrlem9 |
|- ( ( R Fr A /\ R Se A ) -> Fun F ) |
6 |
|
eqid |
|- ( ( F |` Pred ( t++ ( R |` A ) , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( ( F |` Pred ( t++ ( R |` A ) , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
7 |
|
simpl |
|- ( ( R Fr A /\ R Se A ) -> R Fr A ) |
8 |
|
predres |
|- Pred ( R , A , z ) = Pred ( ( R |` A ) , A , z ) |
9 |
|
relres |
|- Rel ( R |` A ) |
10 |
|
ssttrcl |
|- ( Rel ( R |` A ) -> ( R |` A ) C_ t++ ( R |` A ) ) |
11 |
|
predrelss |
|- ( ( R |` A ) C_ t++ ( R |` A ) -> Pred ( ( R |` A ) , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
12 |
9 10 11
|
mp2b |
|- Pred ( ( R |` A ) , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) |
13 |
8 12
|
eqsstri |
|- Pred ( R , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) |
14 |
13
|
a1i |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
15 |
|
frrlem16 |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. a e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , a ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
16 |
|
ttrclse |
|- ( R Se A -> t++ ( R |` A ) Se A ) |
17 |
|
setlikespec |
|- ( ( z e. A /\ t++ ( R |` A ) Se A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
18 |
17
|
ancoms |
|- ( ( t++ ( R |` A ) Se A /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
19 |
16 18
|
sylan |
|- ( ( R Se A /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
20 |
19
|
adantll |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
21 |
|
predss |
|- Pred ( t++ ( R |` A ) , A , z ) C_ A |
22 |
21
|
a1i |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) C_ A ) |
23 |
|
difss |
|- ( A \ dom F ) C_ A |
24 |
|
frmin |
|- ( ( ( R Fr A /\ R Se A ) /\ ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
25 |
23 24
|
mpanr1 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
26 |
3 1 4 6 7 14 15 20 22 25
|
frrlem14 |
|- ( ( R Fr A /\ R Se A ) -> dom F = A ) |
27 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
28 |
5 26 27
|
sylanbrc |
|- ( ( R Fr A /\ R Se A ) -> F Fn A ) |