| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frr.1 |  |-  F = frecs ( R , A , G ) | 
						
							| 2 |  | eqid |  |-  { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } | 
						
							| 3 | 2 | frrlem1 |  |-  { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 4 | 3 1 | frrlem15 |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( g e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } /\ h e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 5 | 3 1 4 | frrlem9 |  |-  ( ( R Fr A /\ R Se A ) -> Fun F ) | 
						
							| 6 |  | eqid |  |-  ( ( F |` Pred ( t++ ( R |` A ) , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( ( F |` Pred ( t++ ( R |` A ) , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
							| 7 |  | simpl |  |-  ( ( R Fr A /\ R Se A ) -> R Fr A ) | 
						
							| 8 |  | predres |  |-  Pred ( R , A , z ) = Pred ( ( R |` A ) , A , z ) | 
						
							| 9 |  | relres |  |-  Rel ( R |` A ) | 
						
							| 10 |  | ssttrcl |  |-  ( Rel ( R |` A ) -> ( R |` A ) C_ t++ ( R |` A ) ) | 
						
							| 11 |  | predrelss |  |-  ( ( R |` A ) C_ t++ ( R |` A ) -> Pred ( ( R |` A ) , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 12 | 9 10 11 | mp2b |  |-  Pred ( ( R |` A ) , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) | 
						
							| 13 | 8 12 | eqsstri |  |-  Pred ( R , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) | 
						
							| 14 | 13 | a1i |  |-  ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 15 |  | frrlem16 |  |-  ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. a e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , a ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 16 |  | ttrclse |  |-  ( R Se A -> t++ ( R |` A ) Se A ) | 
						
							| 17 |  | setlikespec |  |-  ( ( z e. A /\ t++ ( R |` A ) Se A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) | 
						
							| 18 | 17 | ancoms |  |-  ( ( t++ ( R |` A ) Se A /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) | 
						
							| 19 | 16 18 | sylan |  |-  ( ( R Se A /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) | 
						
							| 20 | 19 | adantll |  |-  ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) | 
						
							| 21 |  | predss |  |-  Pred ( t++ ( R |` A ) , A , z ) C_ A | 
						
							| 22 | 21 | a1i |  |-  ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) C_ A ) | 
						
							| 23 |  | difss |  |-  ( A \ dom F ) C_ A | 
						
							| 24 |  | frmin |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) | 
						
							| 25 | 23 24 | mpanr1 |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) | 
						
							| 26 | 3 1 4 6 7 14 15 20 22 25 | frrlem14 |  |-  ( ( R Fr A /\ R Se A ) -> dom F = A ) | 
						
							| 27 |  | df-fn |  |-  ( F Fn A <-> ( Fun F /\ dom F = A ) ) | 
						
							| 28 | 5 26 27 | sylanbrc |  |-  ( ( R Fr A /\ R Se A ) -> F Fn A ) |