| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frr.1 |  |-  F = frecs ( R , A , G ) | 
						
							| 2 |  | simpl |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> ( R Fr A /\ R Se A ) ) | 
						
							| 3 | 1 | frr1 |  |-  ( ( R Fr A /\ R Se A ) -> F Fn A ) | 
						
							| 4 | 1 | frr2 |  |-  ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) | 
						
							| 5 | 4 | ralrimiva |  |-  ( ( R Fr A /\ R Se A ) -> A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) | 
						
							| 6 | 3 5 | jca |  |-  ( ( R Fr A /\ R Se A ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 9 |  | frr3g |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) | 
						
							| 10 | 2 7 8 9 | syl3anc |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |