Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrrel.1 | |- F = frecs ( R , A , G ) | |
| Assertion | frrdmcl | |- ( X e. dom F -> Pred ( R , A , X ) C_ dom F ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frrrel.1 | |- F = frecs ( R , A , G ) | |
| 2 | predeq3 | |- ( z = X -> Pred ( R , A , z ) = Pred ( R , A , X ) ) | |
| 3 | 2 | sseq1d | |- ( z = X -> ( Pred ( R , A , z ) C_ dom F <-> Pred ( R , A , X ) C_ dom F ) ) | 
| 4 | eqid |  |-  { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| 5 | 4 1 | frrlem8 | |- ( z e. dom F -> Pred ( R , A , z ) C_ dom F ) | 
| 6 | 3 5 | vtoclga | |- ( X e. dom F -> Pred ( R , A , X ) C_ dom F ) |