| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem9.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | frrlem9.2 |  |-  F = frecs ( R , A , G ) | 
						
							| 3 |  | frrlem9.3 |  |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 4 |  | vex |  |-  y e. _V | 
						
							| 5 | 4 | eldm2 |  |-  ( y e. dom F <-> E. z <. y , z >. e. F ) | 
						
							| 6 | 1 2 | frrlem5 |  |-  F = U. B | 
						
							| 7 | 1 | unieqi |  |-  U. B = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 8 | 6 7 | eqtri |  |-  F = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 9 | 8 | eleq2i |  |-  ( <. y , z >. e. F <-> <. y , z >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) | 
						
							| 10 |  | eluniab |  |-  ( <. y , z >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } <-> E. f ( <. y , z >. e. f /\ E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) ) | 
						
							| 11 | 9 10 | bitri |  |-  ( <. y , z >. e. F <-> E. f ( <. y , z >. e. f /\ E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) ) | 
						
							| 12 |  | 19.8a |  |-  ( ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) -> E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) -> E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 14 |  | abid |  |-  ( f e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } <-> E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) -> f e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) | 
						
							| 16 |  | elssuni |  |-  ( f e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } -> f C_ U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) -> f C_ U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) | 
						
							| 18 | 17 8 | sseqtrrdi |  |-  ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) -> f C_ F ) | 
						
							| 19 |  | simpl23 |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) | 
						
							| 20 |  | simpl3 |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> <. y , z >. e. f ) | 
						
							| 21 |  | vex |  |-  z e. _V | 
						
							| 22 | 4 21 | opeldm |  |-  ( <. y , z >. e. f -> y e. dom f ) | 
						
							| 23 | 20 22 | syl |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> y e. dom f ) | 
						
							| 24 |  | simpl21 |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> f Fn x ) | 
						
							| 25 | 24 | fndmd |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> dom f = x ) | 
						
							| 26 | 23 25 | eleqtrd |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> y e. x ) | 
						
							| 27 |  | rsp |  |-  ( A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) -> ( y e. x -> ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 28 | 19 26 27 | sylc |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) | 
						
							| 29 |  | simpl1 |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> ph ) | 
						
							| 30 | 1 2 3 | frrlem9 |  |-  ( ph -> Fun F ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> Fun F ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> f C_ F ) | 
						
							| 33 |  | funssfv |  |-  ( ( Fun F /\ f C_ F /\ y e. dom f ) -> ( F ` y ) = ( f ` y ) ) | 
						
							| 34 | 31 32 23 33 | syl3anc |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> ( F ` y ) = ( f ` y ) ) | 
						
							| 35 |  | simp22r |  |-  ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) -> A. y e. x Pred ( R , A , y ) C_ x ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> A. y e. x Pred ( R , A , y ) C_ x ) | 
						
							| 37 |  | rsp |  |-  ( A. y e. x Pred ( R , A , y ) C_ x -> ( y e. x -> Pred ( R , A , y ) C_ x ) ) | 
						
							| 38 | 36 26 37 | sylc |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> Pred ( R , A , y ) C_ x ) | 
						
							| 39 | 38 25 | sseqtrrd |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> Pred ( R , A , y ) C_ dom f ) | 
						
							| 40 |  | fun2ssres |  |-  ( ( Fun F /\ f C_ F /\ Pred ( R , A , y ) C_ dom f ) -> ( F |` Pred ( R , A , y ) ) = ( f |` Pred ( R , A , y ) ) ) | 
						
							| 41 | 31 32 39 40 | syl3anc |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> ( F |` Pred ( R , A , y ) ) = ( f |` Pred ( R , A , y ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> ( y G ( F |` Pred ( R , A , y ) ) ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) | 
						
							| 43 | 28 34 42 | 3eqtr4d |  |-  ( ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) /\ f C_ F ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) | 
						
							| 44 | 18 43 | mpdan |  |-  ( ( ph /\ ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) /\ <. y , z >. e. f ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) | 
						
							| 45 | 44 | 3exp |  |-  ( ph -> ( ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) -> ( <. y , z >. e. f -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) ) | 
						
							| 46 | 45 | exlimdv |  |-  ( ph -> ( E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) -> ( <. y , z >. e. f -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) ) | 
						
							| 47 | 46 | impcomd |  |-  ( ph -> ( ( <. y , z >. e. f /\ E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 48 | 47 | exlimdv |  |-  ( ph -> ( E. f ( <. y , z >. e. f /\ E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 49 | 11 48 | biimtrid |  |-  ( ph -> ( <. y , z >. e. F -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 50 | 49 | exlimdv |  |-  ( ph -> ( E. z <. y , z >. e. F -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 51 | 5 50 | biimtrid |  |-  ( ph -> ( y e. dom F -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 52 | 51 | imp |  |-  ( ( ph /\ y e. dom F ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) |