| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem11.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | frrlem11.2 |  |-  F = frecs ( R , A , G ) | 
						
							| 3 |  | frrlem11.3 |  |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 4 |  | frrlem11.4 |  |-  C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
							| 5 | 1 2 3 | frrlem9 |  |-  ( ph -> Fun F ) | 
						
							| 6 | 5 | funresd |  |-  ( ph -> Fun ( F |` S ) ) | 
						
							| 7 |  | dmres |  |-  dom ( F |` S ) = ( S i^i dom F ) | 
						
							| 8 |  | df-fn |  |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) ) | 
						
							| 9 | 7 8 | mpbiran2 |  |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> Fun ( F |` S ) ) | 
						
							| 10 | 6 9 | sylibr |  |-  ( ph -> ( F |` S ) Fn ( S i^i dom F ) ) | 
						
							| 11 |  | vex |  |-  z e. _V | 
						
							| 12 |  | ovex |  |-  ( z G ( F |` Pred ( R , A , z ) ) ) e. _V | 
						
							| 13 | 11 12 | fnsn |  |-  { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } | 
						
							| 14 | 10 13 | jctir |  |-  ( ph -> ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) ) | 
						
							| 15 |  | eldifn |  |-  ( z e. ( A \ dom F ) -> -. z e. dom F ) | 
						
							| 16 |  | elinel2 |  |-  ( z e. ( S i^i dom F ) -> z e. dom F ) | 
						
							| 17 | 15 16 | nsyl |  |-  ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) ) | 
						
							| 18 |  | disjsn |  |-  ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) | 
						
							| 20 |  | fnun |  |-  ( ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) /\ ( ( S i^i dom F ) i^i { z } ) = (/) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 21 | 14 19 20 | syl2an |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 22 | 4 | fneq1i |  |-  ( C Fn ( ( S i^i dom F ) u. { z } ) <-> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |