| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem11.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | frrlem11.2 |  |-  F = frecs ( R , A , G ) | 
						
							| 3 |  | frrlem11.3 |  |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 4 |  | frrlem11.4 |  |-  C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
							| 5 |  | frrlem12.5 |  |-  ( ph -> R Fr A ) | 
						
							| 6 |  | frrlem12.6 |  |-  ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) | 
						
							| 7 |  | frrlem12.7 |  |-  ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) | 
						
							| 8 |  | elun |  |-  ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w e. { z } ) ) | 
						
							| 9 |  | velsn |  |-  ( w e. { z } <-> w = z ) | 
						
							| 10 | 9 | orbi2i |  |-  ( ( w e. ( S i^i dom F ) \/ w e. { z } ) <-> ( w e. ( S i^i dom F ) \/ w = z ) ) | 
						
							| 11 | 8 10 | bitri |  |-  ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w = z ) ) | 
						
							| 12 |  | elinel2 |  |-  ( w e. ( S i^i dom F ) -> w e. dom F ) | 
						
							| 13 | 1 | frrlem1 |  |-  B = { p | E. q ( p Fn q /\ ( q C_ A /\ A. w e. q Pred ( R , A , w ) C_ q ) /\ A. w e. q ( p ` w ) = ( w G ( p |` Pred ( R , A , w ) ) ) ) } | 
						
							| 14 |  | breq1 |  |-  ( x = q -> ( x g u <-> q g u ) ) | 
						
							| 15 |  | breq1 |  |-  ( x = q -> ( x h v <-> q h v ) ) | 
						
							| 16 | 14 15 | anbi12d |  |-  ( x = q -> ( ( x g u /\ x h v ) <-> ( q g u /\ q h v ) ) ) | 
						
							| 17 | 16 | imbi1d |  |-  ( x = q -> ( ( ( x g u /\ x h v ) -> u = v ) <-> ( ( q g u /\ q h v ) -> u = v ) ) ) | 
						
							| 18 | 17 | imbi2d |  |-  ( x = q -> ( ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) <-> ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( q g u /\ q h v ) -> u = v ) ) ) ) | 
						
							| 19 | 18 3 | chvarvv |  |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( q g u /\ q h v ) -> u = v ) ) | 
						
							| 20 | 13 2 19 | frrlem10 |  |-  ( ( ph /\ w e. dom F ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) | 
						
							| 21 | 12 20 | sylan2 |  |-  ( ( ph /\ w e. ( S i^i dom F ) ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) | 
						
							| 22 | 21 | adantlr |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) | 
						
							| 23 | 4 | fveq1i |  |-  ( C ` w ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) | 
						
							| 24 | 1 2 3 | frrlem9 |  |-  ( ph -> Fun F ) | 
						
							| 25 | 24 | funresd |  |-  ( ph -> Fun ( F |` S ) ) | 
						
							| 26 |  | dmres |  |-  dom ( F |` S ) = ( S i^i dom F ) | 
						
							| 27 |  | df-fn |  |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) ) | 
						
							| 28 | 25 26 27 | sylanblrc |  |-  ( ph -> ( F |` S ) Fn ( S i^i dom F ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( F |` S ) Fn ( S i^i dom F ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F |` S ) Fn ( S i^i dom F ) ) | 
						
							| 31 |  | vex |  |-  z e. _V | 
						
							| 32 |  | ovex |  |-  ( z G ( F |` Pred ( R , A , z ) ) ) e. _V | 
						
							| 33 | 31 32 | fnsn |  |-  { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } | 
						
							| 34 | 33 | a1i |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) | 
						
							| 35 |  | eldifn |  |-  ( z e. ( A \ dom F ) -> -. z e. dom F ) | 
						
							| 36 |  | elinel2 |  |-  ( z e. ( S i^i dom F ) -> z e. dom F ) | 
						
							| 37 | 35 36 | nsyl |  |-  ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) ) | 
						
							| 38 |  | disjsn |  |-  ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) ) | 
						
							| 39 | 37 38 | sylibr |  |-  ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) | 
						
							| 42 |  | simpr |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> w e. ( S i^i dom F ) ) | 
						
							| 43 |  | fvun1 |  |-  ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } /\ ( ( ( S i^i dom F ) i^i { z } ) = (/) /\ w e. ( S i^i dom F ) ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) = ( ( F |` S ) ` w ) ) | 
						
							| 44 | 30 34 41 42 43 | syl112anc |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) = ( ( F |` S ) ` w ) ) | 
						
							| 45 | 23 44 | eqtrid |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( ( F |` S ) ` w ) ) | 
						
							| 46 |  | elinel1 |  |-  ( w e. ( S i^i dom F ) -> w e. S ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> w e. S ) | 
						
							| 48 | 47 | fvresd |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( F |` S ) ` w ) = ( F ` w ) ) | 
						
							| 49 | 45 48 | eqtrd |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( F ` w ) ) | 
						
							| 50 | 1 2 3 4 | frrlem11 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 51 |  | fnfun |  |-  ( C Fn ( ( S i^i dom F ) u. { z } ) -> Fun C ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> Fun C ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Fun C ) | 
						
							| 54 |  | ssun1 |  |-  ( F |` S ) C_ ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
							| 55 | 54 4 | sseqtrri |  |-  ( F |` S ) C_ C | 
						
							| 56 | 55 | a1i |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F |` S ) C_ C ) | 
						
							| 57 |  | eldifi |  |-  ( z e. ( A \ dom F ) -> z e. A ) | 
						
							| 58 | 57 7 | sylan2 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) | 
						
							| 59 |  | rspa |  |-  ( ( A. w e. S Pred ( R , A , w ) C_ S /\ w e. S ) -> Pred ( R , A , w ) C_ S ) | 
						
							| 60 | 58 46 59 | syl2an |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ S ) | 
						
							| 61 | 1 2 | frrlem8 |  |-  ( w e. dom F -> Pred ( R , A , w ) C_ dom F ) | 
						
							| 62 | 12 61 | syl |  |-  ( w e. ( S i^i dom F ) -> Pred ( R , A , w ) C_ dom F ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ dom F ) | 
						
							| 64 | 60 63 | ssind |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) | 
						
							| 65 | 64 26 | sseqtrrdi |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ dom ( F |` S ) ) | 
						
							| 66 |  | fun2ssres |  |-  ( ( Fun C /\ ( F |` S ) C_ C /\ Pred ( R , A , w ) C_ dom ( F |` S ) ) -> ( C |` Pred ( R , A , w ) ) = ( ( F |` S ) |` Pred ( R , A , w ) ) ) | 
						
							| 67 | 53 56 65 66 | syl3anc |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C |` Pred ( R , A , w ) ) = ( ( F |` S ) |` Pred ( R , A , w ) ) ) | 
						
							| 68 | 60 | resabs1d |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( F |` S ) |` Pred ( R , A , w ) ) = ( F |` Pred ( R , A , w ) ) ) | 
						
							| 69 | 67 68 | eqtrd |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C |` Pred ( R , A , w ) ) = ( F |` Pred ( R , A , w ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( w G ( C |` Pred ( R , A , w ) ) ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) | 
						
							| 71 | 22 49 70 | 3eqtr4d |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( w e. ( S i^i dom F ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 73 | 31 32 | fvsn |  |-  ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) | 
						
							| 74 | 4 | fveq1i |  |-  ( C ` z ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) | 
						
							| 75 | 33 | a1i |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) | 
						
							| 76 |  | vsnid |  |-  z e. { z } | 
						
							| 77 | 76 | a1i |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> z e. { z } ) | 
						
							| 78 |  | fvun2 |  |-  ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } /\ ( ( ( S i^i dom F ) i^i { z } ) = (/) /\ z e. { z } ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) | 
						
							| 79 | 29 75 40 77 78 | syl112anc |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) | 
						
							| 80 | 74 79 | eqtrid |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( C ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) | 
						
							| 81 | 4 | reseq1i |  |-  ( C |` Pred ( R , A , z ) ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) | 
						
							| 82 |  | resundir |  |-  ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) = ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) | 
						
							| 83 | 81 82 | eqtri |  |-  ( C |` Pred ( R , A , z ) ) = ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) | 
						
							| 84 | 57 6 | sylan2 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> Pred ( R , A , z ) C_ S ) | 
						
							| 85 | 84 | resabs1d |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) ) | 
						
							| 86 |  | predfrirr |  |-  ( R Fr A -> -. z e. Pred ( R , A , z ) ) | 
						
							| 87 | 5 86 | syl |  |-  ( ph -> -. z e. Pred ( R , A , z ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> -. z e. Pred ( R , A , z ) ) | 
						
							| 89 |  | ressnop0 |  |-  ( -. z e. Pred ( R , A , z ) -> ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) | 
						
							| 90 | 88 89 | syl |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) | 
						
							| 91 | 85 90 | uneq12d |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( ( F |` Pred ( R , A , z ) ) u. (/) ) ) | 
						
							| 92 |  | un0 |  |-  ( ( F |` Pred ( R , A , z ) ) u. (/) ) = ( F |` Pred ( R , A , z ) ) | 
						
							| 93 | 91 92 | eqtrdi |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( F |` Pred ( R , A , z ) ) ) | 
						
							| 94 | 83 93 | eqtrid |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( C |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( z G ( C |` Pred ( R , A , z ) ) ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) | 
						
							| 96 | 73 80 95 | 3eqtr4a |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( C ` z ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) | 
						
							| 97 |  | fveq2 |  |-  ( w = z -> ( C ` w ) = ( C ` z ) ) | 
						
							| 98 |  | id |  |-  ( w = z -> w = z ) | 
						
							| 99 |  | predeq3 |  |-  ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) | 
						
							| 100 | 99 | reseq2d |  |-  ( w = z -> ( C |` Pred ( R , A , w ) ) = ( C |` Pred ( R , A , z ) ) ) | 
						
							| 101 | 98 100 | oveq12d |  |-  ( w = z -> ( w G ( C |` Pred ( R , A , w ) ) ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) | 
						
							| 102 | 97 101 | eqeq12d |  |-  ( w = z -> ( ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) <-> ( C ` z ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 103 | 96 102 | syl5ibrcom |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( w = z -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 104 | 72 103 | jaod |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( w e. ( S i^i dom F ) \/ w = z ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 105 | 11 104 | biimtrid |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( w e. ( ( S i^i dom F ) u. { z } ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 106 | 105 | 3impia |  |-  ( ( ph /\ z e. ( A \ dom F ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |