| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem11.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | frrlem11.2 |  |-  F = frecs ( R , A , G ) | 
						
							| 3 |  | frrlem11.3 |  |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 4 |  | frrlem11.4 |  |-  C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
							| 5 |  | frrlem12.5 |  |-  ( ph -> R Fr A ) | 
						
							| 6 |  | frrlem12.6 |  |-  ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) | 
						
							| 7 |  | frrlem12.7 |  |-  ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) | 
						
							| 8 |  | frrlem13.8 |  |-  ( ( ph /\ z e. A ) -> S e. _V ) | 
						
							| 9 |  | frrlem13.9 |  |-  ( ( ph /\ z e. A ) -> S C_ A ) | 
						
							| 10 |  | eldifi |  |-  ( z e. ( A \ dom F ) -> z e. A ) | 
						
							| 11 | 10 8 | sylan2 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> S e. _V ) | 
						
							| 12 | 11 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> S e. _V ) | 
						
							| 13 |  | inex1g |  |-  ( S e. _V -> ( S i^i dom F ) e. _V ) | 
						
							| 14 |  | snex |  |-  { z } e. _V | 
						
							| 15 |  | unexg |  |-  ( ( ( S i^i dom F ) e. _V /\ { z } e. _V ) -> ( ( S i^i dom F ) u. { z } ) e. _V ) | 
						
							| 16 | 13 14 15 | sylancl |  |-  ( S e. _V -> ( ( S i^i dom F ) u. { z } ) e. _V ) | 
						
							| 17 | 12 16 | syl |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( S i^i dom F ) u. { z } ) e. _V ) | 
						
							| 18 | 1 2 3 4 | frrlem11 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 19 | 18 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 20 |  | inss1 |  |-  ( S i^i dom F ) C_ S | 
						
							| 21 | 10 9 | sylan2 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> S C_ A ) | 
						
							| 22 | 21 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> S C_ A ) | 
						
							| 23 | 20 22 | sstrid |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( S i^i dom F ) C_ A ) | 
						
							| 24 | 10 | adantl |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> z e. A ) | 
						
							| 25 | 24 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> z e. A ) | 
						
							| 26 | 25 | snssd |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> { z } C_ A ) | 
						
							| 27 | 23 26 | unssd |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( S i^i dom F ) u. { z } ) C_ A ) | 
						
							| 28 |  | elun |  |-  ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w e. { z } ) ) | 
						
							| 29 |  | elin |  |-  ( w e. ( S i^i dom F ) <-> ( w e. S /\ w e. dom F ) ) | 
						
							| 30 |  | velsn |  |-  ( w e. { z } <-> w = z ) | 
						
							| 31 | 29 30 | orbi12i |  |-  ( ( w e. ( S i^i dom F ) \/ w e. { z } ) <-> ( ( w e. S /\ w e. dom F ) \/ w = z ) ) | 
						
							| 32 | 28 31 | bitri |  |-  ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( ( w e. S /\ w e. dom F ) \/ w = z ) ) | 
						
							| 33 | 10 7 | sylan2 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) | 
						
							| 34 | 33 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) | 
						
							| 35 |  | rsp |  |-  ( A. w e. S Pred ( R , A , w ) C_ S -> ( w e. S -> Pred ( R , A , w ) C_ S ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( w e. S -> Pred ( R , A , w ) C_ S ) ) | 
						
							| 37 | 1 2 | frrlem8 |  |-  ( w e. dom F -> Pred ( R , A , w ) C_ dom F ) | 
						
							| 38 | 36 37 | anim12d1 |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( w e. S /\ w e. dom F ) -> ( Pred ( R , A , w ) C_ S /\ Pred ( R , A , w ) C_ dom F ) ) ) | 
						
							| 39 |  | ssin |  |-  ( ( Pred ( R , A , w ) C_ S /\ Pred ( R , A , w ) C_ dom F ) <-> Pred ( R , A , w ) C_ ( S i^i dom F ) ) | 
						
							| 40 | 38 39 | imbitrdi |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( w e. S /\ w e. dom F ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) | 
						
							| 41 | 10 6 | sylan2 |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> Pred ( R , A , z ) C_ S ) | 
						
							| 42 | 41 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> Pred ( R , A , z ) C_ S ) | 
						
							| 43 |  | preddif |  |-  Pred ( R , ( A \ dom F ) , z ) = ( Pred ( R , A , z ) \ Pred ( R , dom F , z ) ) | 
						
							| 44 | 43 | eqeq1i |  |-  ( Pred ( R , ( A \ dom F ) , z ) = (/) <-> ( Pred ( R , A , z ) \ Pred ( R , dom F , z ) ) = (/) ) | 
						
							| 45 |  | ssdif0 |  |-  ( Pred ( R , A , z ) C_ Pred ( R , dom F , z ) <-> ( Pred ( R , A , z ) \ Pred ( R , dom F , z ) ) = (/) ) | 
						
							| 46 | 44 45 | sylbb2 |  |-  ( Pred ( R , ( A \ dom F ) , z ) = (/) -> Pred ( R , A , z ) C_ Pred ( R , dom F , z ) ) | 
						
							| 47 |  | predss |  |-  Pred ( R , dom F , z ) C_ dom F | 
						
							| 48 | 46 47 | sstrdi |  |-  ( Pred ( R , ( A \ dom F ) , z ) = (/) -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 49 | 48 | adantl |  |-  ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 51 | 42 50 | ssind |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> Pred ( R , A , z ) C_ ( S i^i dom F ) ) | 
						
							| 52 |  | predeq3 |  |-  ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) | 
						
							| 53 | 52 | sseq1d |  |-  ( w = z -> ( Pred ( R , A , w ) C_ ( S i^i dom F ) <-> Pred ( R , A , z ) C_ ( S i^i dom F ) ) ) | 
						
							| 54 | 51 53 | syl5ibrcom |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( w = z -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) | 
						
							| 55 | 40 54 | jaod |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( ( w e. S /\ w e. dom F ) \/ w = z ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) | 
						
							| 56 | 32 55 | biimtrid |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( w e. ( ( S i^i dom F ) u. { z } ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) | 
						
							| 58 |  | ssun1 |  |-  ( S i^i dom F ) C_ ( ( S i^i dom F ) u. { z } ) | 
						
							| 59 | 57 58 | sstrdi |  |-  ( ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 60 | 59 | ralrimiva |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) | 
						
							| 61 | 27 60 | jca |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) | 
						
							| 62 | 1 2 3 4 5 6 7 | frrlem12 |  |-  ( ( ph /\ z e. ( A \ dom F ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) | 
						
							| 63 | 62 | 3expa |  |-  ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) | 
						
							| 64 | 63 | ralrimiva |  |-  ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) | 
						
							| 65 | 64 | adantrr |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) | 
						
							| 66 |  | fneq2 |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( C Fn t <-> C Fn ( ( S i^i dom F ) u. { z } ) ) ) | 
						
							| 67 |  | sseq1 |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( t C_ A <-> ( ( S i^i dom F ) u. { z } ) C_ A ) ) | 
						
							| 68 |  | sseq2 |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( Pred ( R , A , w ) C_ t <-> Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) | 
						
							| 69 | 68 | raleqbi1dv |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( A. w e. t Pred ( R , A , w ) C_ t <-> A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) | 
						
							| 70 | 67 69 | anbi12d |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) <-> ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) ) | 
						
							| 71 |  | raleq |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) <-> A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 72 | 66 70 71 | 3anbi123d |  |-  ( t = ( ( S i^i dom F ) u. { z } ) -> ( ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) <-> ( C Fn ( ( S i^i dom F ) u. { z } ) /\ ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) /\ A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 73 | 72 | spcegv |  |-  ( ( ( S i^i dom F ) u. { z } ) e. _V -> ( ( C Fn ( ( S i^i dom F ) u. { z } ) /\ ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) /\ A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) -> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 74 | 73 | imp |  |-  ( ( ( ( S i^i dom F ) u. { z } ) e. _V /\ ( C Fn ( ( S i^i dom F ) u. { z } ) /\ ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) /\ A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) -> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 75 | 17 19 61 65 74 | syl13anc |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 76 | 1 2 3 | frrlem9 |  |-  ( ph -> Fun F ) | 
						
							| 77 |  | resfunexg |  |-  ( ( Fun F /\ S e. _V ) -> ( F |` S ) e. _V ) | 
						
							| 78 | 76 12 77 | syl2an2r |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( F |` S ) e. _V ) | 
						
							| 79 |  | snex |  |-  { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } e. _V | 
						
							| 80 |  | unexg |  |-  ( ( ( F |` S ) e. _V /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } e. _V ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) e. _V ) | 
						
							| 81 | 78 79 80 | sylancl |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) e. _V ) | 
						
							| 82 | 4 81 | eqeltrid |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. _V ) | 
						
							| 83 |  | fneq1 |  |-  ( c = C -> ( c Fn t <-> C Fn t ) ) | 
						
							| 84 |  | fveq1 |  |-  ( c = C -> ( c ` w ) = ( C ` w ) ) | 
						
							| 85 |  | reseq1 |  |-  ( c = C -> ( c |` Pred ( R , A , w ) ) = ( C |` Pred ( R , A , w ) ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( c = C -> ( w G ( c |` Pred ( R , A , w ) ) ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) | 
						
							| 87 | 84 86 | eqeq12d |  |-  ( c = C -> ( ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) <-> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 88 | 87 | ralbidv |  |-  ( c = C -> ( A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) <-> A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 89 | 83 88 | 3anbi13d |  |-  ( c = C -> ( ( c Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) ) <-> ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 90 | 89 | exbidv |  |-  ( c = C -> ( E. t ( c Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) ) <-> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 91 | 1 | frrlem1 |  |-  B = { c | E. t ( c Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) ) } | 
						
							| 92 | 90 91 | elab2g |  |-  ( C e. _V -> ( C e. B <-> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 93 | 82 92 | syl |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( C e. B <-> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 94 | 75 93 | mpbird |  |-  ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. B ) |