| Step | Hyp | Ref | Expression | 
						
							| 1 |  | predres |  |-  Pred ( R , A , w ) = Pred ( ( R |` A ) , A , w ) | 
						
							| 2 |  | relres |  |-  Rel ( R |` A ) | 
						
							| 3 |  | ssttrcl |  |-  ( Rel ( R |` A ) -> ( R |` A ) C_ t++ ( R |` A ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( R |` A ) C_ t++ ( R |` A ) | 
						
							| 5 |  | predrelss |  |-  ( ( R |` A ) C_ t++ ( R |` A ) -> Pred ( ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  Pred ( ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) | 
						
							| 7 | 1 6 | eqsstri |  |-  Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) | 
						
							| 8 |  | inss1 |  |-  ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) | 
						
							| 9 |  | coss1 |  |-  ( ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) -> ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) | 
						
							| 11 |  | coss2 |  |-  ( ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) -> ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) ) | 
						
							| 12 | 8 11 | ax-mp |  |-  ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) | 
						
							| 13 | 10 12 | sstri |  |-  ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) | 
						
							| 14 |  | ttrcltr |  |-  ( t++ ( R |` A ) o. t++ ( R |` A ) ) C_ t++ ( R |` A ) | 
						
							| 15 | 13 14 | sstri |  |-  ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ t++ ( R |` A ) | 
						
							| 16 |  | predtrss |  |-  ( ( ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ t++ ( R |` A ) /\ w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 17 | 15 16 | mp3an1 |  |-  ( ( w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 18 | 7 17 | sstrid |  |-  ( ( w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 19 | 18 | ancoms |  |-  ( ( z e. A /\ w e. Pred ( t++ ( R |` A ) , A , z ) ) -> Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( z e. A -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |